Skip to main content

Dendritic Cells in Rhinitis

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 188))

Abstract

Dendritic cells (DCs) play an important role in all kind of rhinitis and sinusitis. One of the most important upper airway diseases is allergic rhinitis. DCs are the professional antigen presenting cells that have the capacity to present antigen to naive-T cells and T-effector cells. In the context of a broad spectrum of rhinitis, from allergic rhinitis via upper respiratory tract virus infection to chronic sinusitis, DCs have an important role in the immunological outcome of the disease. Studies in humans and animal models that have highlighted the role of DC were evaluated. This article reviews recent information on the involvement of DC in rhinitis, and the mechanisms by which DC could be employed as targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allam JP et al (2006) Comparative analysis of nasal and oral mucosa dendritic cells. Allergy 61:166–172

    Article  PubMed  CAS  Google Scholar 

  • Allam JP et al (2008) Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells. J Allergy Clin Immunol 121:368–374

    Article  PubMed  CAS  Google Scholar 

  • Antonopoulos C et al (2008) IL-18 is a key proximal mediator of contact hypersensitivity and allergen-induced Langerhans cell migration in murine epidermis. J Leukoc Biol 83:361–367

    Article  PubMed  CAS  Google Scholar 

  • Barry PW, O'Callaghan C (1996) Inhalational drug delivery from seven different spacer devices. Thorax 51:835–840

    Google Scholar 

  • Brandenburg AH et al (2000) Type 1-like immune response is found in children with respiratory syncytial virus infection regardless of clinical severity. J Med Virol 62:267–277

    Article  PubMed  CAS  Google Scholar 

  • Braun-Fahrlander C (2003) Environmental exposure to endotoxin and other microbial products and the decreased risk of childhood atopy: evaluating developments since April 2002. Curr Opin Allergy Clin Immunol 3:325–329

    Article  PubMed  Google Scholar 

  • Braunstahl GJ et al (2003) Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: a comparison between upper and lower airways. Clin Exp Allergy 33:579–587

    Article  PubMed  Google Scholar 

  • Cameron L et al (2000) Local synthesis of epsilon germline gene transcripts, IL-4, and IL-13 in allergic nasal mucosa after ex vivo allergen exposure. J Allergy Clin Immunol 106:46–52

    Article  PubMed  CAS  Google Scholar 

  • Clejan S et al (2005) Immune responses induced by intranasal imiquimod and implications for therapeutics in rhinovirus infections. J Cell Mol Med 9:457–461

    Article  PubMed  CAS  Google Scholar 

  • Coker HA, Durham SR, Gould HJ (2003) Local somatic hypermutation and class switch recombination in the nasal mucosa of allergic rhinitis patients. J Immunol 171:5602–5610

    PubMed  CAS  Google Scholar 

  • Cross ML, Gill HS (2001) Can immunoregulatory lactic acid bacteria be used as dietary supplements to limit allergies? Int Arch Allergy Immunol 125:112–119

    Article  PubMed  CAS  Google Scholar 

  • de Heer HJ et al (2004) Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 200:89–98

    Article  PubMed  Google Scholar 

  • del Rio ML et al (2007) CD103- and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J Immunol 178:6861–6866

    PubMed  CAS  Google Scholar 

  • Dubois B et al (1997) Dendritic cells enhance growth and differentiation of CD40-activated B lymphocytes. J Exp Med 185:941–951

    Article  PubMed  CAS  Google Scholar 

  • Durham SR et al (1992) Cytokine messenger RNA expression for IL-3, IL-4, IL-5, and granulocyte/macrophage-colony-stimulating factor in the nasal mucosa after local allergen provocation: relationship to tissue eosinophilia. J Immunol 148:2390–2394

    PubMed  CAS  Google Scholar 

  • Durham SR et al (1997) Expression of epsilon germ-line gene transcripts and mRNA for the epsilon heavy chain of IgE in nasal B cells and the effects of topical corticosteroid. Eur J Immunol 27:2899–2906

    Article  PubMed  CAS  Google Scholar 

  • Ettmayer P et al (2006) A novel low molecular weight inhibitor of dendritic cells and B cells blocks allergic inflammation. Am J Respir Crit Care Med 173:599–606

    Article  PubMed  CAS  Google Scholar 

  • Faith A et al (2005) Functional plasticity of human respiratory tract dendritic cells: GM-CSF enhances T(H)2 development. J Allergy Clin Immunol 116:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Fallarino F et al (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Fokkens WJ et al (1991) Langerhans cells in nasal mucosa of patients with grass pollen allergy. Immunobiology 182:135–142

    PubMed  CAS  Google Scholar 

  • Fokkens WJ et al (1997) Allergic rhinitis and inflammation: the effect of nasal corticosteroid therapy. Allergy 52:29–32

    Article  PubMed  CAS  Google Scholar 

  • Fokkens WJ et al (1998) Local corticosteroid treatment: the effect on cells and cytokines in nasal allergic inflammation. Am J Rhinol 12:21–26

    Article  PubMed  CAS  Google Scholar 

  • Funderburg N et al (2007) Human -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci U S A 104:18631–18635

    Article  PubMed  CAS  Google Scholar 

  • Geissmann F et al (2002) Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 196:417–430

    Article  PubMed  CAS  Google Scholar 

  • Gevaert P et al (2005) Organization of secondary lymphoid tissue and local IgE formation to Staphylococcus aureus enterotoxins in nasal polyp tissue. Allergy 60:71–79

    Article  PubMed  CAS  Google Scholar 

  • Godthelp T et al (1996) Antigen presenting cells in the nasal mucosa of patients with allergic rhinitis during allergen provocation. Clin Exp Allergy 26:677–688

    Article  PubMed  CAS  Google Scholar 

  • Goodridge HS, Underhill DM (2008) Fungal Recognition by TLR2 and Dectin-1. Handb Exp Pharmacol 87–109

    Google Scholar 

  • Gould HJ et al (2006) Germinal-centre reactions in allergic inflammation. Trends Immunol 27:446–452

    Article  PubMed  CAS  Google Scholar 

  • Hammad H et al (2002) Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7. J Immunol 169:1524–1534

    PubMed  CAS  Google Scholar 

  • Hammad H et al (2007) Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J Exp Med 204:357–367

    Article  PubMed  CAS  Google Scholar 

  • Hartmann E et al (2006) Analysis of plasmacytoid and myeloid dendritic cells in nasal epithelium. Clin Vaccine Immunol 13:1278–1286

    Article  PubMed  CAS  Google Scholar 

  • Hattori H et al (2001) Expression of costimulatory CD80/CD86-CD28/CD152 molecules in nasal mucosa of patients with perennial allergic rhinitis. Clin Exp Allergy 31:1242–1249

    Article  PubMed  CAS  Google Scholar 

  • Hattori H et al (2006) Signals through CD40 play a critical role in the pathophysiology of Schistosoma mansoni egg antigen—induced allergic rhinitis in mice. Am J Rhinol 20:165–169

    PubMed  Google Scholar 

  • Hattori H et al (2007) STAT1 is involved in the pathogenesis of murine allergic rhinitis. Am J Rhinol 21:241–247

    Article  PubMed  Google Scholar 

  • Hegmans JP et al (2005) Immunotherapy of murine malignant mesothelioma using tumor lysatepulsed dendritic cells. Am J Respir Crit Care Med 171:1168–1177

    Article  PubMed  Google Scholar 

  • Hellings PW, Ceuppens JL (2004) Mouse models of global airway allergy: what have we learned and what should we do next? Allergy 59:914–919

    Article  PubMed  CAS  Google Scholar 

  • Hintzen G et al (2006) Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J Immunol 177:7346–7354

    PubMed  CAS  Google Scholar 

  • Holm A et al (2001) Fluticasone propionate aqueous nasal spray reduces inflammatory cells in unchallenged allergic nasal mucosa: effects of single allergen challenge. J Allergy Clin Immunol 107:627–633

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi S et al (2007) Migration of tumor antigen-pulsed dendritic cells after mucosal administration in the human upper respiratory tract. J Clin Immunol 27:598–604

    Article  PubMed  Google Scholar 

  • Hubert P et al (2005) E-cadherin-dependent adhesion of dendritic and Langerhans cells to keratinocytes is defective in cervical human papillomavirus-associated (pre)neoplastic lesions. J Pathol 206:346–355

    Article  PubMed  CAS  Google Scholar 

  • Humbert M et al (1997) Relationship between IL-4 and IL-5 mRNA expression and disease severity in atopic asthma. Am J Respir Crit Care Med 156:704–708

    PubMed  CAS  Google Scholar 

  • Humbert M et al (1999) The immunopathology of extrinsic (atopic) and intrinsic (non-atopic) asthma: more similarities than differences. Immunol Today 20:528–533

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y et al (2005) Clinical effects of Lactobacillus acidophilus strain L-92 on perennial allergic rhinitis: a double-blind, placebo-controlled study. J Dairy Sci 88:527–533

    Article  PubMed  CAS  Google Scholar 

  • Jahnsen FL et al (2000) Experimentally induced recruitment of plasmacytoid (CD123high) dendritic cells in human nasal allergy. J Immunol 165:4062–4068

    PubMed  CAS  Google Scholar 

  • Jahnsen FL et al (2002) Involvement of plasmacytoid dendritic cells in human diseases. Hum Immunol 63:1201–1205

    Article  PubMed  CAS  Google Scholar 

  • Jiang A et al (2007) Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27:610–624

    Article  PubMed  CAS  Google Scholar 

  • Kalkman PM et al (2002) A hampered chemoattractant-induced cytoskeletal rearrangement in granulocytes of patients with unexplained severe chronic and relapsing infections of the upper and lower airways. In vitro restoration by G-CSF exposure. Clin Exp Immunol 127:115–122

    Article  PubMed  CAS  Google Scholar 

  • Kleinjan A et al (1997) Allergen binding to specific IgE in the nasal mucosa of allergic patients. J Allergy Clin Immunol 99:515–521

    Article  PubMed  CAS  Google Scholar 

  • Kleinjan A et al (1999) Increase in IL-8, IL-10, IL-13, and RANTES mRNA levels (in situ hybridization) in the nasal mucosa after nasal allergen provocation. J Allergy Clin Immunol 103:441–450

    Article  PubMed  CAS  Google Scholar 

  • Kleinjan A et al (2000a) Preventive treatment of intranasal fluticasone propionate reduces cytokine mRNA expressing cells before and during a single nasal allergen provocation. Clin Exp Allergy 30:1476–1485

    Article  CAS  Google Scholar 

  • Kleinjan A et al (2000b) Local production and detection of (specific) IgE in nasal B-cells and plasma cells of allergic rhinitis patients. Eur Respir J 15:491–497

    Article  CAS  Google Scholar 

  • Kleinjan A et al (2006) An essential role for dendritic cells in human and experimental allergic rhinitis. J Allergy Clin Immunol 118:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Kuipers H et al (2004) Dendritic cells retrovirally overexpressing IL-12 induce strong Th1 responses to inhaled antigen in the lung but fail to revert established Th2 sensitization. J Leukoc Biol 76:1028–1038

    Article  PubMed  CAS  Google Scholar 

  • Lambrecht BN, Hammad H (2003) Taking our breath away: dendritic cells in the pathogenesis of asthma. Nat Rev Immunol 3:994–1003

    Article  PubMed  CAS  Google Scholar 

  • Lund L et al (2007) Comparison of allergenicity and immunogenicity of an intact allergen vaccine and commercially available allergoid products for birch pollen immunotherapy. Clin Exp Allergy 37:564–571

    Article  PubMed  CAS  Google Scholar 

  • Marcet B et al (2007) Extracellular nucleotides regulate CCL20 release from human primary airway epithelial cells, monocytes and monocyte-derived dendritic cells. J Cell Physiol 211: 716–727

    Article  PubMed  CAS  Google Scholar 

  • Martin E et al (2003) The combination of plasmid interleukin-12 with a single DNA vaccine is more effective than Mycobacterium bovis (bacille Calmette-Guerin) in protecting against systemic Mycobacterim avium infection. Immunology 109:308–314

    Article  PubMed  CAS  Google Scholar 

  • Masuyama K et al (1998) Nasal eosinophilia and IL-5 mRNA expression in seasonal allergic rhinitis induced by natural allergen exposure: effect of topical corticosteroids. J Allergy Clin Immunol 102:610–617

    Article  PubMed  CAS  Google Scholar 

  • McCusker C et al (2002) Site-specific sensitization in a murine model of allergic rhinitis: role of the upper airway in lower airways disease. J Allergy Clin Immunol 110:891–898

    Article  PubMed  Google Scholar 

  • McCusker CT (2004) Use of mouse models of allergic rhinitis to study the upper and lower airway link. Curr Opin Allergy Clin Immunol 4:11–16

    Article  PubMed  Google Scholar 

  • McMenamin C, Girn B, Holt PG (1992) The distribution of IgE plasma cells in lymphoid and non-lymphoid tissues of high-IgE responder rats: differential localization of antigen-specific and ‘bystander’ components of the IgE response to inhaled antigen. Immunology 77:592–596

    PubMed  CAS  Google Scholar 

  • Mizumoto N, Takashima A (2004) CD1a and langerin: acting as more than Langerhans cell markers. J Clin Invest 113:658–660

    PubMed  CAS  Google Scholar 

  • Okano M et al (2001) Differential role of CD80 and CD86 molecules in the induction and the effector phases of allergic rhinitis in mice. Am J Respir Crit Care Med 164:1501–1507

    PubMed  CAS  Google Scholar 

  • Phan TG et al (2007) Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Remoli ME et al (2002) Selective expression of type I IFN genes in human dendritic cells infected with Mycobacterium tuberculosis. J Immunol 169:366–374

    PubMed  CAS  Google Scholar 

  • Saito H et al (2001) Allergen-induced murine upper airway inflammation: local and systemic changes in murine experimental allergic rhinitis. Immunology 104:226–234

    Article  PubMed  CAS  Google Scholar 

  • Salib RJ, Lau LC, Howarth PH (2005) The novel use of the human nasal epithelial cell line RPMI 2650 as an in vitro model to study the influence of allergens and cytokines on transforming growth factor-beta gene expression and protein release. Clin Exp Allergy 35:811–819

    Article  PubMed  CAS  Google Scholar 

  • Samsom JN et al (2007) Secretory leukoprotease inhibitor in mucosal lymph node dendritic cells regulates the threshold for mucosal tolerance. J Immunol 179:6588–6595

    PubMed  CAS  Google Scholar 

  • Scheel C et al (2006) CD1c+ myeloid dendritic cells and TSLP are involved in human nasal allergy. Abstracth 9th International Conference Dendritic Cells. Edinburg, 16–20 September 2006 No.123

    Google Scholar 

  • Smurthwaite L et al (2001) Persistent IgE synthesis in the nasal mucosa of hay fever patients. Eur J Immunol 31:3422–3431

    Article  PubMed  CAS  Google Scholar 

  • Soumelis V et al (2002) Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3:673–680

    Article  PubMed  CAS  Google Scholar 

  • Sung SS et al (2006) A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 176:2161–2172

    PubMed  CAS  Google Scholar 

  • Takahashi K et al (2006) Dendritic cells interacting mainly with B cells in the lymphoepithelial symbiosis of the human palatine tonsil. Virchows Arch 448:623–629

    Article  PubMed  Google Scholar 

  • Takamura K et al (2007) Regulatory role of lymphoid chemokine CCL19 and CCL21 in the control of allergic rhinitis. J Immunol 179:5897–5906

    PubMed  CAS  Google Scholar 

  • Takano K et al (2005) HLA-DR- and CD11c-positive dendritic cells penetrate beyond well-developed epithelial tight junctions in human nasal mucosa of allergic rhinitis. J Histochem Cytochem 53:611–619

    Article  PubMed  CAS  Google Scholar 

  • Takizawa R et al (2007) Increased expression of HLA-DR and CD86 in nasal epithelial cells in allergic rhinitics: antigen presentation to T cells and up-regulation by diesel exhaust particles. Clin Exp Allergy 37:420–433

    Article  PubMed  CAS  Google Scholar 

  • Till SJ et al (2001) Recruitment of CD1a+ Langerhans cells to the nasal mucosa in seasonal allergic rhinitis and effects of topical corticosteroid therapy. Allergy 56:126–131

    Article  PubMed  CAS  Google Scholar 

  • Tomaki M et al (2000) Eosinophilopoiesis in a murine model of allergic airway eosinophilia: involvement of bone marrow IL-5 and IL-5 receptor alpha. J Immunol 165:4040–4050

    PubMed  CAS  Google Scholar 

  • Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    Article  PubMed  CAS  Google Scholar 

  • van Benten IJ et al (2001) Prolonged nasal eosinophilia in allergic patients after common cold. Allergy 56:949–956

    Article  PubMed  Google Scholar 

  • van Benten IJ et al (2003) RSV-induced bronchiolitis but not upper respiratory tract infection is accompanied by an increased nasal IL-18 response. J Med Virol 71:290–297

    Article  PubMed  CAS  Google Scholar 

  • van Benten IJ et al (2005) Reduced nasal IL-10 and enhanced TNFalpha responses during rhinovirus and RSV-induced upper respiratory tract infection in atopic and non-atopic infants. J Med Virol 75:348–357

    Article  PubMed  CAS  Google Scholar 

  • van der Marel AP et al (2007) Blockade of IDO inhibits nasal tolerance induction. J Immunol 179:894–900

    PubMed  Google Scholar 

  • van Rijt LS et al (2004) Essential role of dendritic cell CD80/CD86 costimulation in the induction, but not reactivation, of TH2 effector responses in a mouse model of asthma. J Allergy Clin Immunol 114:166–173

    Article  PubMed  CAS  Google Scholar 

  • van Rijt LS et al (2005) In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 201:981–991

    Article  PubMed  CAS  Google Scholar 

  • van Seters M et al (2008) Treatment of Vulvar Intraepithelial Neoplasia with Topical Imiquimod. N Engl J Med 358:1465–1473

    Article  PubMed  Google Scholar 

  • Vinke JG, Fokken WJ (1999) The role of the adenoid in allergic sensitisation. Int J Pediatr Otorhinolaryngol 49(Suppl 1):S145–S149

    Article  PubMed  Google Scholar 

  • Vinke JG et al (1999) Differences in nasal cellular infiltrates between allergic children and age-matched controls. Eur Respir J 13:797–803

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, McCusker CT (2005) Interleukin-13-dependent bronchial hyper-responsiveness following isolated upper-airway allergen challenge in a murine model of allergic rhinitis and asthma. Clin Exp Allergy 35:1104–1111

    Article  PubMed  CAS  Google Scholar 

  • Weschta M et al (2004) Topical antifungal treatment of chronic rhinosinusitis with nasal polyps: a randomized, double-blind clinical trial. J Allergy Clin Immunol 113:1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Worgall S et al (2001) Protection against pulmonary infection with Pseudomonas aeruginosa following immunization with P. aeruginosa-pulsed dendritic cells. Infect Immun 69:4521–4527

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K et al (2006) Modification of allergic inflammation in murine model of rhinitis by different bacterial ligands: involvement of mast cells and dendritic cells. Clin Exp Allergy 36:760–769

    Article  PubMed  CAS  Google Scholar 

  • Yanai M et al (2007) The role of CCL22/macrophage-derived chemokine in allergic rhinitis. Clin Immunol 125:291–298

    Article  PubMed  CAS  Google Scholar 

  • Ying S et al (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174:8183–8190

    PubMed  CAS  Google Scholar 

  • Yu JS et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979

    Article  PubMed  CAS  Google Scholar 

  • Zammit DJ et al (2005) Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22:561–570

    Article  PubMed  CAS  Google Scholar 

  • Zhou B et al (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6:1047–1053

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alex KleinJan or Bart N. Lambrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

KleinJan, A., Lambrecht, B.N. (2009). Dendritic Cells in Rhinitis. In: Lombardi, G., Riffo-Vasquez, Y. (eds) Dendritic Cells. Handbook of Experimental Pharmacology, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71029-5_6

Download citation

Publish with us

Policies and ethics