Skip to main content

The sphere by itself: can we distribute points on it evenly?

  • Chapter
  • First Online:
Geometry Revealed
  • 4072 Accesses

Abstract

As we shall see throughout this chapter, the geometry of the “ordinary sphere” S2 – two dimensional in a space of three dimensions – harbors many pitfalls. It’s much more subtle than we might think, given the nice roundness and all the symmetries of the object. Its geometry is indeed not made easier – at least for certain questions – by its being round, compact, and bounded , in contrast to the Euclidean plane. Sect. III.3 will be the most representative in this regard; but, much simpler and more fundamental, we encounter the “impossible” problem of maps of Earth, which we will scarcely mention, except in Sect. III.3; see also 18.1 of [B]. One of the reasons for the difficulties the sphere poses is that its group of isometries is not at all commutative, whereas the Euclidean plane admits a commutative group of translations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • [B] Berger, M. (1987, 2009) Geometry I,II. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • [BG] Berger, M., & Gostiaux, B. (1987). Differential Geometry: Manifolds, Curves and Surfaces. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Aigner, M., & Ziegler, G. (1998). Proofs from the book. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Andrews, G., Askey, R., & Roy, R. (1999). Special functions. Cambridge: Cambridge University Press

    Google Scholar 

  • Anstreicher, K. (2004). The thirteen spheres: A new proof. Discrete & Computational Geometry, 31, 613–626

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, M. (1992). Les placements de cercles. Pour la Science, 176, 72–79

    Google Scholar 

  • Berger, M. (1993a). Encounter with a geometer: Eugenio Calabi. In P. de Bartolomeis, F. Tricerri, & E. Vesentini (Ed.), Conference in honour of Eugenio Calabi, Manifolds and geometry (Pisa) (pp. 20–60). Cambridge: Cambridge University Press

    Google Scholar 

  • Berger, M. (1993b). Les paquets de cercles. In C. E. Tricerri (Eds.), Differential geometry and topology. Alghero: World Scientific

    Google Scholar 

  • Berger, M. (1998). Riemannian geometry during the second half of the century. Jahrbericht der Deutsch. Math.-Verein. (DMV), 100, 45–208

    MATH  Google Scholar 

  • Berger, M. (2001). Peut-on définir la géométrie aujourd’hui? Results in Mathematics, 40, 37–87

    MATH  MathSciNet  Google Scholar 

  • Berger, M. (2003). A Panoramic introduction to Riemannian geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Berger, M., Gauduchon, P., & Mazet, E. (1971). Le spectre d’une variété riemannienne. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Berger, M., & Gostiaux, B. (1987). Géométrie differentielle: variétés, courbes et surfaces. Paris: Presses Universitaires de France

    Google Scholar 

  • Bourgain, J., & Lindenstrauss, J. (1993). Approximating the sphere by a Minkowski sum of segments with equal length. Discrete & Computational Geometry, 9, 131–144

    Article  MATH  MathSciNet  Google Scholar 

  • Brieskorn, E., & Knörrer, H. (1986). Plane algebraic curves. Boston: Birkhäuser

    Google Scholar 

  • Casselman, B. (2004). The difficulties of kissing in three dimensions. Notices of the American Mathematical Society, 51, 884–885

    MATH  MathSciNet  Google Scholar 

  • Colin de Verdièere, Y. (1989). Distribution de points sur une sphère (a la Lubotzky, Phillips and Sarnak). In Séminaire Bourbaki, 1988–1989. In Astéerisque, 177–178, 83–93

    Google Scholar 

  • Conway, J., & Sloane, N. (1999). Sphere packings, lattices and groups (3rd ed.). Berlin/Heidelberg/New York: Springer

    MATH  Google Scholar 

  • Courant, R., & Hilbert, D. (1953). Methods of mathematical physics. New York: Wiley

    Google Scholar 

  • Croft, H., Falconer, K., & Guy, R. (1991). Unsolved problems in geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • de la Harpe, P., & Valette, A. (1989). La propriété (T) de Kazdhan pour les groupes localement compacts, Astérisque 175, Société mathématique de France

    Google Scholar 

  • Delsarte, P., Goethals, J., & Seidel, J. (1977). Spherical codes and designs. Geometriae Dedicata, 6, 363–388

    MATH  MathSciNet  Google Scholar 

  • Deschamps, A. (1982). Variétés riemannienne stigmatiques. Journal de Mathématiques Pures et Appliquée, 4, 381–400

    MathSciNet  Google Scholar 

  • Fejes Tóth, L. (1963). On the isoperimetric property of the regular hyperbolic tetrahedra. Mag yar Tud. Akad. matematikai Kutato Intez. Közl, 8, 53–57

    MATH  Google Scholar 

  • Fejes Tóth, L. (1972). Lagerungen in der Ebene, auf der Kugel und im Raum (2nd ed.). Berlin/Heidelberg/New York: Springer

    MATH  Google Scholar 

  • Giannopoulos, A., & Milman, V. (2001). Euclidean structure in finite dimensional normed spaces. In W. B. Johnson & J. Lindenstrauss (Eds.). Handbook of the geometry of banach spaces (Vol. 1). New York: Kluwer

    Chapter  Google Scholar 

  • Gibbs, J. (1961). The scientific papers of J. Williard Gibbs (Vol. 2). New York: Dover

    Google Scholar 

  • Gromov, M. (1988b). Possible trends in mathematics in the coming decades. Notices of the American Mathematical Society, 45, 846–847

    MathSciNet  Google Scholar 

  • Gruber, P., & Wills, J. (Eds.). (1993). Handbook of convex geometry. Amsterdam: North-Holland

    Google Scholar 

  • Habicht, W., & van der Waerden, B. (1951). Lagerungen von Punkten auf der Kugel. Mathematische Annalen, 128, 223–234

    Article  Google Scholar 

  • Hadamard, J. (1911). Le’cons de géométrie élémentaire. Paris: Armand Colin, reprint Jacques Gabay, 2004

    Google Scholar 

  • Hardin, D., & Saff, E. (2004). Discretizing manifolds via minimum energy points. Notices of the American Mathematical Society, 51(10), 1186–1195

    MATH  MathSciNet  Google Scholar 

  • Helgason, S. (1980). The radon transform. Boston: Birkhäuser

    Google Scholar 

  • Katanforoush, A., & Shahshahani, M. (2003). Distributing points on the sphere, I. Experimental Mathematics, 12, 199–210

    MathSciNet  Google Scholar 

  • Krauth, W., & Loebl, M. (2006). Jamming and geometric representations of graphs. http://www.emis.de/journals/EJC/Volume_13/PDF/v13i1r56.pdf

  • Kuijlaars, A., & Saff, E. (1998). Asymptotics for minimal discrete energy on the sphere. Transactions of the American Mathematical Society, 350, 523–538

    Article  MATH  MathSciNet  Google Scholar 

  • Leech, J. (1956). The problem of the thirteenth sphere. The Mathematical gazette, 40, 22–23

    Article  MATH  MathSciNet  Google Scholar 

  • Lubotsky, A., Phillips, R., & Sarnak, P. (1987). Hecke operators and distributing points on the sphere, I, II. Communications on Pure and Applied Mathematics, 39(40), S149–S186

    Google Scholar 

  • Lubotsky, A., Phillips, R., & Sarnak, P. (1988). Ramanujan graphs. Combinatorica, 8, 261–277

    Article  MathSciNet  Google Scholar 

  • Lubotzky, L. (1994). Discrete groups, expanding graphs and invariant measures. Boston: Birkhäuser

    Google Scholar 

  • Melissen, H. (1997). Packing and Covering With Circles. Ph.D. Thesis, Universiteit Utrecht

    Google Scholar 

  • Michelsohn, M. L. (1987). Surfaces minimales dans les sphères. Astérisque, Théorie des variétés minimales et applications, Astérisque 154–155. Société mathématique de France, 131–150

    Google Scholar 

  • Morgan, F. (2005). Kepler’s conjecture and Hales proof – a book review. Notices of the American Mathematical Society, 52, 44–47

    Google Scholar 

  • Odlysko, A., & Sloane, N. (1979). New bounds on the number of unit spheres that can touch a unit sphere in n dimensions. Journal of Combinatorial Theory. Series A, 26, 210–214

    Article  MathSciNet  Google Scholar 

  • Pach, J., & Agarwal, P. (1995). Combinatorial geometry. New York: Wiley

    Google Scholar 

  • Pfender, F., & Ziegler, G. (2004). Kissing numbers, sphere packings and some unexpected proofs. Notices of the American Mathematical Society, 51, 873–883

    MATH  MathSciNet  Google Scholar 

  • Rakhmanov, E., Saff, E., & Zhou, Y. M. (1994). Minimal discrete energy on the sphere. Mathematical Research Letters, 1, 647–662

    MATH  MathSciNet  Google Scholar 

  • Robinson, R. (1961). Arrangement of 24 points on a sphere. Mathematische Annalen, 144, 17–48

    Article  MATH  MathSciNet  Google Scholar 

  • Saff, E., & Kuijlaars, A. (1997). Distributing many points on a sphere. The Mathematical Intelligencer, 19, 5–11

    Article  MATH  MathSciNet  Google Scholar 

  • Sarnak, P. (1990). Some applications of modular forms. Cambridge: Cambridge University Press

    Google Scholar 

  • Schütte, K., & van der Waerden, B. (1953). Das problem der dreizehn Kugeln. Mathematische Annalen, 125, 325–334

    Article  MATH  MathSciNet  Google Scholar 

  • Shub, M., & Smale, S. (1993). Complexity of Bezout’s theorem III: Condition number and packing. Journal of Complexity, 9, 4–14

    Article  MATH  MathSciNet  Google Scholar 

  • Simons, J. (1998, June). Interview with Jim Simons. The Emissary, MSRI Berkeley, 1–7

    Google Scholar 

  • Smale, S. (1998). Mathematical problems for the next century. Mathematical Intelligencer, 20(2), 11–27

    Article  MathSciNet  Google Scholar 

  • Stewart, I. (1991). Circularly covering clathrin. Nature, 351, 103

    Article  Google Scholar 

  • Stolarski, K. (1973). Sum of distances between points on a sphere. Proceedings of the American Mathematical Society, 41, 575–582

    MathSciNet  Google Scholar 

  • Takeuchi, M. (1994). Modern spherical functions. Providence: American Mathematical Society

    Google Scholar 

  • van der Waerden, B. (1952). Punkte auf der Kugel. Drei Zusätze. Mathematische Annalen, 125, 213–222

    Article  MATH  MathSciNet  Google Scholar 

  • Wagner, G. (1993). On a new method for constructing good point sets on spheres. Discrete & Computational Geometry, 9, 111–129

    Article  MATH  MathSciNet  Google Scholar 

  • Walker, J. (1979a). More on Boomerangs, including their connection with a climped golf ball. Scientific American, 240,

    Google Scholar 

  • Walker, J. (1979b). The amateur scientist, column: More on boomerangs, including their connection with the dimpled golf ball. Scientific American, 1979, 134–139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Berger .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, M. (2010). The sphere by itself: can we distribute points on it evenly?. In: Geometry Revealed. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70997-8_3

Download citation

Publish with us

Policies and ethics