Skip to main content

Geometry and dynamics II: geodesic flow on a surface

  • Chapter
  • First Online:
  • 4075 Accesses

Abstract

We will be interested in the geometry on a surface (not of a surface, see in Sect. VI.2 for an explanation of this important distinction) and simultaneously in mechanics on it (Arnold, 1978). There are at least three motivations for this. First motivation: our planet is to a first approximation a surface, rather well described as an ellipsoid of revolution of revolution (see below). It is thus important to comprehend the nature of the geometry of such a surface; a typical question: what is the shortest path from one point to another? This is the aspect of living on a surface. Now physicists – who are interested in much more complicated mechanical systems – need to study simple systems because these provide good tests for general hypotheses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • [B] Berger, M. (1987, 2009) Geometry I,II. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • [BG] Berger, M., & Gostiaux, B. (1987) Differential Geometry: Manifolds, Curves and Surfaces. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Arnold, V. (1978). Mathematical methods of classical mechanics. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Ballmann, W. (1995). Lectures on spaces of nonpositive curvature. Basel: Birkhäuser

    Google Scholar 

  • Ballmann,W., Gromov, M., & Schroeder, V. (1985). Manifolds of nonpositive curvature. Basel: Birkhäuser

    Google Scholar 

  • Bangert, V. (1980). Closed Geodesics on complete surfaces. Annals of Mathematics, 251, 83–96

    Article  MATH  MathSciNet  Google Scholar 

  • Bangert, V. (1988). Mather sets for twist maps and geodesics on tori. In U. Kirchgraber & H. Walther (Eds.), Dynamics reported (pp. 1–56). Chichester: Teubner, Wiley

    Google Scholar 

  • Berger, M. (1993). Encounter with a geometer: Eugenio Calabi. In P. de Bartolomeis, F. Tricerri, & E. Vesentini (Eds.), Conference in honour of Eugenio Calabi, Manifolds and geometry (Pisa). Cambridge University Press, 20–60

    Google Scholar 

  • Berger, M. (1994). Géométrie et dynamique sur une surface. Rivista di Matematica della Università di Parma, 3, 3–65

    MATH  Google Scholar 

  • Berger, M. (1999). Riemannian geometry during the second half of the twentieth century. Providence: American Mathematical Society

    Google Scholar 

  • Berger, M. (2003). A panoramic introduction to Riemannian geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Besse, A. (1978). Manifolds all of whose geodesics are closed. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Besson, G., Courtois, G., & Gallot, S. (1995). Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geometric and Functional Analysis, 5, 731–799

    Article  MATH  MathSciNet  Google Scholar 

  • Bliss, G. (1902–1903). The geodesic lines on an anchor ring. Annals of Mathematics, 4, 1–20

    Article  MathSciNet  Google Scholar 

  • Burns, K., & Gerber, M. (1989). Real analytic Bernouilli geodesic flows on S2. Ergodic Theory and Dynamical Systems, 8, 531–553

    Google Scholar 

  • Burns, K., & Paternain, G. (1997). Counting geodesics on a Riemannian manifold and topological entropy of geodesic flows. Ergodic Theory and Dynamical Systems, 17, 1043–1059

    Article  MATH  MathSciNet  Google Scholar 

  • Buser, P. (1992). Geometry and spectra of compact Riemann surfaces. Basel: Birkhäuser

    Google Scholar 

  • Byalyi, M., & Polterovich, L. (1986). Geodesic flows on the two-dimensional torus and phase transition ‘commensurability – noncommensurability’. Functional Analysis and its Applications (Translation of Funktsional.Anal. i Prilozhen.), 20, 260–266

    MathSciNet  Google Scholar 

  • Calabi, E., & Cao, J. (1992). Simple closed geodesics on convex surfaces. Journal of Differential Geometry, 36, 517–549

    MATH  MathSciNet  Google Scholar 

  • Chavel, I. (1993). Riemannian geometry: A modern introduction. Cambridge: Cambridge University Press

    Google Scholar 

  • Croke, C. (1992). Volume of balls in manifolds without conjugate points. International Journal of Mathematics, 3, 455–467

    Article  MATH  MathSciNet  Google Scholar 

  • Croke, C., Fathi, A., & Feldman, J. (1992). The marked length spectrum of a surface of non positive curvature. Topology, 31, 847–855

    Article  MATH  MathSciNet  Google Scholar 

  • Croke, C., & Kleiner, B. (1994). Conjugacy rigidity for manifolds with a parallel vector field. Journal of Differential Geometry, 39, 659–680

    MATH  MathSciNet  Google Scholar 

  • Donnay, V. (1988). Geodesics flow on the two-sphere II: ergodicity. Lecture Notes in Math. n ° 1342: Dynamical systems, Springer, 112–153

    Google Scholar 

  • Funk, P. (1913). Über Flächen mit lauter gescholssenen geodätischen Linien. Mathematische Annalen, 74, 278–300

    Article  MATH  MathSciNet  Google Scholar 

  • Galperin, G. (2003). Convex polyhedra without simple closed geodesics. Regular and Chaotic Dynamics, 8, 45–58

    Article  MATH  MathSciNet  Google Scholar 

  • Ghys, E. (1987). Flots d’Anosov dont les feuilletages stables sont différentiables. Annales Scientifiques de l’Ecole Normale Supérieure, 20, 251–270

    MATH  MathSciNet  Google Scholar 

  • Grayson, M. (1989). Shortening imbedded curves. Annals of Mathematics, 129, 71–111

    Article  MathSciNet  Google Scholar 

  • Gromoll, D., & Grove, K. (1981). On metrics on S2 all of whose geodesics are closed. Inventiones Mathematicae, 65, 175–177

    Article  MATH  MathSciNet  Google Scholar 

  • Gromov, M. (1987b). Entropy, homology and semi-algebraic geometry. In Séminaire Bourbaki (pp. 145–146). Paris: Société mathématique de France, 225–240

    Google Scholar 

  • Gruber, P., & Wills, J. (Eds.). (1993). Handbook of convex geometry. Amsterdam: North-Holland

    Google Scholar 

  • Hadamard, J. (1898). Les surfaces à courbure opposées et leurs lignes géodésiques. Journal de Mathématiques Pures et Appliquées, 4, 27–73

    Google Scholar 

  • Hass, J., & Morgan, F. (1996). Geodesics and soap bubbles on surfaces. Mathematische Zeitschrift, 223, 185–196

    MATH  MathSciNet  Google Scholar 

  • Hedlund, G. (1935). On the metric transitivity of the geodesics on closed surfaces of constant negative curvature. Annals of Mathematics, 35, 787–808

    Article  MathSciNet  Google Scholar 

  • Hingston, N. (1993). On the growth of the number of closed geodesics on the two-sphere. International Mathematics Research Notices, 9, 253–262

    Article  MathSciNet  Google Scholar 

  • Hopf, E. (1939). Statistik des geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Vehr. Sächs. Akad. Wiss. Leipzig, 91, 261–304

    MathSciNet  Google Scholar 

  • Katok, A. (1980). Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publications mathm´ atiques de líInstitut des hautes études scientifiques, 51, 137–173

    Article  MATH  MathSciNet  Google Scholar 

  • Katok, A. (1982). Entropy and closed geodesics. Ergodic Theory Dynam. Systems, 2, 339–365

    MATH  MathSciNet  Google Scholar 

  • Katok, A. (1987). The growth rate of singular and periodic orbits for a polygonal billiard. Communications in Mathematical Physics, 111, 151–160

    Article  MATH  MathSciNet  Google Scholar 

  • Katok, A. (1988). Four applications of conformal equivalence to geometry and dynamics. Ergodic Theory Dynam. Systems, 8, 139–152

    Article  MathSciNet  Google Scholar 

  • Klingenberg, W. (1982). Riemannian geometry (2nd ed.). Berlin: De Gruyter, 1995

    MATH  Google Scholar 

  • Knieper, G., & Weiss, H. (1994a). A surface with positive curvature and positive topological entropy. Journal of Differential Geometry, 39, 229–249

    MATH  MathSciNet  Google Scholar 

  • Le Brun, C., & Mason, L. (2002). Zoll Manifolds and complex Surfaces, Journal of Differential Geometry, 61, 453–535

    MathSciNet  Google Scholar 

  • Mané, R. (1987). Ergodic theory and differentiable dynamics. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Mané, R. (1997). On the topological entropy of geodesic flows. Journal of Differential Geometry, 45, 74–93

    MATH  MathSciNet  Google Scholar 

  • Masur, H. (1990). The growth rate of trajectories of a quadratic differential. Ergodic Theory Dynam. Systems, 10, 151–176

    Article  MATH  MathSciNet  Google Scholar 

  • Otal, J.-P. (1990a). Le spectre marqué des surfaces à courbure négative. Annals of Mathematics, 131, 151–162

    Article  MathSciNet  Google Scholar 

  • Paternain, G. (1999). Geodesic flows. Basel: Birkhäuser

    Google Scholar 

  • Paternain, G., & Paternain, M. (1994). Topological entropy versus geodesic entropy. International Journal of Mathematics, 5, 213–218

    Article  MATH  MathSciNet  Google Scholar 

  • Poincaré, H. (1905). Sur les lignes géodésiques des surface convexes. Transactions of the American Mathematical, 6, 237–274

    Article  MATH  Google Scholar 

  • Pollicott, M. (1994). Closed geodesic distribution for manifolds of non positive curvature. Coventry: Warwick University

    Google Scholar 

  • Rademacher, H. (1994). On a generic property of geodesic flows. Mathematische Annalen, 298, 101–116

    Article  MATH  MathSciNet  Google Scholar 

  • Serre, J.-P. (1951). Homologie singuliére des espaces fibrés. Annals of Mathematics, 54, 425–505

    Article  MathSciNet  Google Scholar 

  • Sinai, Y. (Ed.). (1987). Dynamicals systems II, encyclopaedia of mathematical sciences (Vol. 2). Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Smale, S. (1998). Mathematical problems for the next century, The Mathematical Intelligencer, 20(2), 11–27

    Article  MathSciNet  Google Scholar 

  • Taimanov, I. (1993). On the existence of three non self-intersecting closed geodesics on manifolds homeomorphic to the 2-sphere. Russian Academy of Science. Izvestiya: Mathematics, 40, 565–590

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Berger .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, M. (2010). Geometry and dynamics II: geodesic flow on a surface. In: Geometry Revealed. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70997-8_12

Download citation

Publish with us

Policies and ethics