Skip to main content

Lattices and packings in higher dimensions

  • Chapter
  • First Online:
Book cover Geometry Revealed

Abstract

A lattice in \(\mathbb{R}^3\) is a Λ that can be written as the set of integer combinations of three linearly independent vectors \(\{a,b,c\}\), say \(\Lambda= \mathbb{Z} \cdot a+\mathbb{Z} \cdot b+\mathbb{Z} \cdot c\). As in Sect. IX.4, two Euclidean invariants are immediately associated with a lattice; they are practically dictated when we seek to pack balls of like radius in the densest possible way, thus the most economical for practical life; see more in Sect. X.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • [B] Berger, M. (1987, 2009) Geometry I, II. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • [BG] Berger, M., & Gostiaux, B. (1987) Differential Geometry: Manifolds, Curves and Surfaces. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Aigner, M., & Ziegler, G.(1998). Proofs from THE BOOK. Springer

    Google Scholar 

  • Ball, K. (1992). A lower boundfor the optimal density of lattice packings. International Mathematics Research Notices, 10, 217–221

    Article  Google Scholar 

  • Berger, M. (1999). Riemannian geometry during the second half of the twentieth century. Providence: American Mathematical Society

    Google Scholar 

  • Berger, M. (2001a). Peut-ondéfinir la géométrie aujourd’hui? In B. Engquist, W.Schmid (Eds.), Mathematics unlimited- 2001 and beyond.Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Berger, M. (2003). Apanoramic introduction to Riemannian geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Betke, U., Henk, M., & Wills,J. (1994). Finite and infinite packings. Journal f¸r dieReine und Angewandte Mathematik, 453, 165–191

    MATH  MathSciNet  Google Scholar 

  • Boerdijk, A. (1952). Someremarks concerning close-packing of equal spheres. Philips Research Reports, 7, 303–313

    MATH  MathSciNet  Google Scholar 

  • Christophe Lesapeur Camembert. Albin Michel

    Google Scholar 

  • Conway, J. (1995). Spherepackings, lattices, codes and greed. In Proceedings of theInternational Congress of Mathematicians (Zürich, 1994), Vol. 1. Birkhäuser, 45–55

    Google Scholar 

  • Conway, J. H., & Sloane, N.J. A. (1999). Sphere packings, Lattices and Groups (3rd ed.). Berlin/Heidelberg/New York: Springer

    MATH  Google Scholar 

  • Conway, J. H., & Sloane, N.J. A. (1993). Sphere packings, lattices and groups (2nd ed.). Berlin/Heidelberg/New York: Springer

    MATH  Google Scholar 

  • De la Harpe, P., & Venkov, B. (2001). Groupes engendrés par des réflexions, designssphériques et réseau de Leech. Comptes Rendus, AcadÈmie des sciences de Paris, 333, 745–750

    Article  MATH  Google Scholar 

  • Dhombres, J., & Robert,J.-B. (1998). Fourier, créateur de la physique mathématique. Paris: Belin

    Google Scholar 

  • Elkies, N. (2000). Lattices,linear codes, and invariants, Part I. Notices of the American Mathematical Society, 47(10), 1238–1945

    MATH  MathSciNet  Google Scholar 

  • Erdös, P., Gruber, P., & Hammer, J. (1989). Lattice points. New York: Longman Scientific and Technical, John Wiley

    Google Scholar 

  • Fejes Tóth, L. (1972). Lagerungen in der Ebene, auf der Kugel und im Raum (2nd ed.). Berlin/Heidelberg/New York: Springer

    MATH  Google Scholar 

  • Fournier, J.-C. (1977).Le théorème du coloriage des cartes (ex-conjecturedes quatre couleurs), Séminaire Bourbaki, 1977–78 Lecture Notes in Mathematics, 710, Springer, 41–64

    Google Scholar 

  • Gruber, P., & Lekerkerker, C. (1987). Geometry of numbers. Amsterdam: North-Holland

    Google Scholar 

  • Gruber, P., & Wills, J.(Eds.). (1993). Handbook of convex geometry. Amsterdam: North-Holland

    Google Scholar 

  • Hales, T. (1994). The status ofthe Kepler conjecture. The Mathematical Intelligencer, 16, 47–58

    Article  MATH  MathSciNet  Google Scholar 

  • Hales, T. (1997). Spherepackings. Discrete & Computational Geometry, 17, 1–51

    Article  MATH  MathSciNet  Google Scholar 

  • Hales, T. (1999). Anoverview of the Kepler conjecture, http://arxiv.org/abs/math/9811071

  • Hales, T. (2000). Cannonballs and honeycombs. Notices of the American Mathematical Society, 47(4), 440–449

    MATH  MathSciNet  Google Scholar 

  • Hsiang, W.-Y. (1993). On thesphere packing problem and the proof of Kepler’s conjecture. International Journal of Mathematics, 4, 739–831

    Article  MATH  MathSciNet  Google Scholar 

  • Kabatianski,G., & Levenshtein, V. (1978). Bounds for packings on a sphere andin a space. Problems of Information Transmission, 14, 1–17

    Google Scholar 

  • Kac, M. (1996). Can one hear theshape of a drum? The American Mathematical Monthly, 73(4), part II, 1–23

    Article  Google Scholar 

  • Lee, R., & Szczarba, R. (1978). On the torsion in K4(Z) and K5(Z). Duke MathematicalJournal, 45, 101–129

    Article  MATH  MathSciNet  Google Scholar 

  • Martinet, J. (1996). Les réseaux parfaits des espaces euclidiens. Paris: Masson

    Google Scholar 

  • Mattila, P. (1995). Geometry of sets and measures in euclidean spaces.Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Milnor, J. (1964). Eigenvalues of the Laplace operator on certain manifolds.Proceedings of the National Academy of Sciences of the USA, 51, 542

    Article  MATH  MathSciNet  Google Scholar 

  • Milnor, J. (1994). Hilbert’sproblem 18: on crystallographic groups, fundamental domains, and onsphere packing. In J. Milnor Collected papers, Publish or Perish,Houston, 173–187

    Google Scholar 

  • Morgan, F. (2005). Kepler’sconjecture and Hales proof – a book review, Notices of theAmerican Mathematical Society, 52(1), 44–47

    Google Scholar 

  • Mumford, D. (2000). The dawning age of stochasticity. In Arnold, Atiyah, Lax, Mazur (Eds.), Mathematics: frontiers and perspectives (pp. 199–218). Providence: American Mathematical society

    Google Scholar 

  • Oesterlé, J.(1990). Empilements de sphères, Séminaire Bourbaki1989–1990. In Astérisque 189–190, 375–398

    Google Scholar 

  • Oesterlé, J.(1999). Densité maximale des empilements de sphères endimension 3 (d’après Thomas C. Hales et Samuel P. Ferguson),Séminaire Bourbaki 1989–1990. InAstérisque 266, 405–413

    Google Scholar 

  • Pöppe, C. (1999). Laconjecture de Kepler démontrée. Pour la Science,259, mai 1999, 100–104

    Google Scholar 

  • Reid, C. (1970). Hilbert. Beriln/Heidelberg/New York: Springer

    Google Scholar 

  • Rigby, J. (1998). Precise colourings of regular triangular tilings. The Mathematical Intelligencer, 20, 4–11

    Article  MATH  MathSciNet  Google Scholar 

  • Rogers, C. (1964). Packings and coverings. Cambridge: Cambridge UniversityPress

    Google Scholar 

  • Rosenbloom, M., & Tsafsman, M. (1990). Multiplicative lattices in global fields. Inventiones Mathematicae, 101, 687–696

    Article  MATH  MathSciNet  Google Scholar 

  • Schiemann, A. (1997). Ternary positive definite quadratic forms are determined by their theta series, Mathematische Annalen, 308, 507–517

    Article  MATH  MathSciNet  Google Scholar 

  • Serre, J.-P. (1970). Cours d’arithmétique. Paris: Presses Universitaires de France

    Google Scholar 

  • Sullivan, J. (1994). Sphere packings give an explicit bound for the Besikovitch coveringtheorem. Journal for Geometric Analysis, 4, 219–231

    MATH  Google Scholar 

  • Thomas, R. (1998). An updateon the four-color theorem. Notices of the American Mathematical Society, 45(7), 848–859

    MATH  MathSciNet  Google Scholar 

  • Thompson, T. (1983).From error-correcting codes through sphere packings tosimple groups. Washington: Mathematical Association of America

    Google Scholar 

  • Torquato, S. & Stillinger, F., (2006). New conjectural bounds on the optimaldensity of sphere packings. Experimental Mathematics, 15(3), 307–332

    MATH  MathSciNet  Google Scholar 

  • Wills, J. (1991). An ellipsoidpacking in E3 of unexpected high density. Mathematika, 38, 318–320

    Article  MATH  MathSciNet  Google Scholar 

  • Wills, J. (1998). Spheres and sausages, crystals and catastrophes – and a joint packing theory, The Mathematical Intelligencer, 20(1), 16–21

    Article  MATH  MathSciNet  Google Scholar 

  • Zong, C. (1996). Strange phenomena in convex and discrete geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Zong, C. (1999). Sphere packings. Berlin/Heidelberg/New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Berger .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, M. (2010). Lattices and packings in higher dimensions. In: Geometry Revealed. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70997-8_10

Download citation

Publish with us

Policies and ethics