Investigating Unstructured Texts with Latent Semantic Analysis

  • Fridolin Wild
  • Christina Stahl
Conference paper

DOI: 10.1007/978-3-540-70981-7_43

Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)
Cite this paper as:
Wild F., Stahl C. (2007) Investigating Unstructured Texts with Latent Semantic Analysis. In: Decker R., Lenz H.J. (eds) Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg

Abstract

Latent semantic analysis (LSA) is an algorithm applied to approximate the meaning of texts, thereby exposing semantic structure to computation. LSA combines the classical vector-space model — well known in computational linguistics — with a singular value decomposition (SVD), a two-mode factor analysis. Thus, bag-of-words representations of texts can be mapped into a modified vector space that is assumed to reflect semantic structure. In this contribution the authors describe the lsa package for the statistical language and environment R and illustrate its proper use through examples from the areas of automated essay scoring and knowledge representation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fridolin Wild
    • 1
  • Christina Stahl
    • 1
  1. 1.Institute for Information Systems and New MediaVienna University of Economics and Business AdministrationViennaAustria

Personalised recommendations