Skip to main content

Noncanonical Amino Acids in Protein Science and Engineering

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 22))

Whether guided by computation, intuition, or evolution, recombinant DNA methods have enabled the preparation of an astonishing array of new protein variants of fundamental and practical importance. In recent years, it has become apparent that the power of protein engineering can be extended further through the use of an expanded set of amino acid constituents (Budisa 2006). The use of “noncanonical” amino acids creates new possibilities for protein design, and can be integrated in straightforward fashion into either “rational” or evolutionary design strategies. This chapter describes some of these new possibilities, with emphasis on the use of noncanonical amino acids to interrogate or change the reactivity, stability, or spectral properties of engineered proteins. Examples include the use of “bio-orthogonal” ligation reactions to enable selective dye-labeling and affinity-tagging, the use of aromatic amino acid analogs to alter the emission properties of luminescent proteins, the use of photosensitive amino acids to effect controlled protein cross-linking, and the use of fluorinated amino acids to control protein stability and protein-protein interactions. While many important experiments in this field have utilized in vitro translation, this chapter will focus primarily on cellular synthesis of proteins that contain noncanonical amino acids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126:15046–15047

    PubMed  CAS  Google Scholar 

  • Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) A comparative study of bioorthogo- nal reactions with azides. ACS Chem Biol 1:644–648

    PubMed  CAS  Google Scholar 

  • Anderson JC, Schultz, PG (2003) Adaptation of an orthogonal archaeal leucyl-tRNA and syn- thetase pair for four-base, amber, and opal suppression. Biochemistry 42:9598–9608

    PubMed  CAS  Google Scholar 

  • Anderson JC, Magliery TJ, Schultz PG (2002) Exploring the limits of codon and anticodon size. Chem Biol 9:237–244

    PubMed  CAS  Google Scholar 

  • Anderson JC, Wu N, Santoro SW, Lakshman V, King DS, Schultz PG (2004) An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci USA 101:7566–7571

    PubMed  CAS  Google Scholar 

  • Bae JH, Rubini M, Jung G, Wiegand G, Seifert MHJ, Azim MK, Kim JS, Zumbusch A, Holak TA, Moroder L, Huber R, Budisa N (2003) Expansion of the genetic code enables design of a novel “gold” class of green fluorescent proteins. J Mol Biol 328:1071–1081

    PubMed  CAS  Google Scholar 

  • Beatty KE, Xie F, Wang Q, Tirrell DA (2005) Selective dye-labeling of newly synthesized proteins in bacterial cells. J Am Chem Soc 127:14150–14151

    PubMed  CAS  Google Scholar 

  • Beatty KE, Liu JC, Xie F, Dieterich DC, Schuman EM, Wang Q, Tirrell DA (2006) Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew Chem Int Edn Engl 45:7364–7367

    CAS  Google Scholar 

  • Beene DL, Dougherty DA, Lester HA (2003) Unnatural amino acid mutagenesis in mapping ion channel function. Curr Opin Neurobiol 13:264–270

    PubMed  CAS  Google Scholar 

  • Bentin T, Hamzavi R, Salomonsson J, Roy H, Ibba M, Nielsen PE (2004) Photoreactive bicyclic amino acids as substrates for mutant Escherichia coli phenylalanyl-tRNA synthetases. J Biol Chem 279:19839–19845

    PubMed  CAS  Google Scholar 

  • Bilgicer B, Kumar K (2002) Synthesis and thermodynamic characterization of self-sorting coiled coils. Tetrahedron 58:4105–4112

    CAS  Google Scholar 

  • Bilgicer B, Xing X, Kumar K (2001) Programmed self-sorting of coiled coils with leucine and hexafluoroleucine cores. J Am Chem Soc 123:11815–11816

    PubMed  CAS  Google Scholar 

  • Blackwell HE (1998) Highly efficient synthesis of covalently cross-linked peptide helices by ring- closing metathesis. Angew Chem Int Edn Engl 37:3281–3284

    CAS  Google Scholar 

  • Blackwell HE, Sadowsky JD, Howard RJ, Sampson JN, Chao JA, Steinmetz WE, O'Leary DJ, Grubbs RH (2001) Ring-closing metathesis of olefinic peptides: design, synthesis, and structural characterization of macrocyclic helical peptides. J Org Chem 66:5291–5302

    PubMed  CAS  Google Scholar 

  • Bong DT, Ghadiri MR (2001) Chemoselective Pd(0)-catalyzed peptide coupling in water. Org Lett 3:2509–2511

    PubMed  CAS  Google Scholar 

  • Bose M, Groff D, Xie JM, Brustad E, Schultz PG (2006) The incorporation of a photoisomerizable amino acid into proteins in E. coli. J Am Chem Soc 128:388–389

    PubMed  CAS  Google Scholar 

  • Botchway SW, Barba I, Jordan R, Harmston R, Haggie PM, William SP, Fulton AM, Parker AW, Brindle KM (2005) A novel method for observing proteins in vivo using a small fluorescent label and multiphoton imaging. Biochem J 390:787–790

    PubMed  CAS  Google Scholar 

  • Brawerman G, Ycas M (1957) Incorporation of the amino acid analog tryptazan into the protein of Escherichia coli. Arch Biochem Biophys 68:112–117

    PubMed  CAS  Google Scholar 

  • Budisa N (2004) Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. Angew Chem Int Edn Engl 43:6426–6263

    CAS  Google Scholar 

  • Budisa N (2006) Engineering the genetic code: Expanding the amino acid repertoire for the design of novel proteins. Wiley-VCH, New York

    Google Scholar 

  • Budisa N, Pipitone O, Siwanowicz I, Rubini M, Pal PP, Holak TA, Gelmi ML (2004a) Efforts towards the design of “Teflon” proteins: In vivo translation with trifluorinated leucine and methionine analogues. Chem Biodiversity 1:1465–1475

    CAS  Google Scholar 

  • Budisa N, Rubini M, Bae JH, Weyher E, Wenger W, Golbik R, Huber R, Moroder L (2002) Global replacement of tryptophan with aminotryptophans generates non-invasive protein-based optical pH sensors. Angew Chem Int Edn Engl 41:4066–4069

    CAS  Google Scholar 

  • Budisa N, Pal PP, Alefelder S, Birle P, Krywcun T, Rubini M, Wenger W, Bae JH, Steiner T (2004b) Probing the role of tryptophans in Aequorea victoria green fluorescent proteins with an expanded genetic code. Biol Chem 385:191–202

    CAS  Google Scholar 

  • Carrico IS (2003) Protein engineering through in vivo incorporation of phenylalanine analogs. Ph.D. Dissertation. California Institute of Technology

    Google Scholar 

  • Chin JW, Schultz PG (2002) In vivo photocrosslinking with unnatural amino acid mutagenesis. ChemBioChem 3:1135–1137

    PubMed  CAS  Google Scholar 

  • Chin JW, Martin AB, King DS, Wang L, Schultz PG (2002a) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 99: 11020–11024

    CAS  Google Scholar 

  • Chin JW, Cropp TA, Chu S, Meggers E, Schultz PG (2003a) Progress toward an expanded eukaryotic genetic code. Chem Biol 10:511–519

    CAS  Google Scholar 

  • Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG (2002b) Addition of p-azido-l- phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124:9026–9027

    CAS  Google Scholar 

  • Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang ZW, Schultz PG (2003b) An expanded eukaryotic genetic code. Science 301:964–967

    CAS  Google Scholar 

  • Clark TD, Ghadiri MR (1995) Supramolecular design by covalent capture — design of a peptide cylinder via hydrogen-bond-promoted intermolecular olefin metathesis. J Am Chem Soc 117: 12364–12365

    CAS  Google Scholar 

  • Cohen BE, McAnaney TB, Park ES, Jan YN, Boxer SG, Jan LY (2002) Probing protein electrostatics with a synthetic fluorescent amino acid. Science 296:1700–1703

    PubMed  CAS  Google Scholar 

  • Cohen GN, Cowie DB (1957) Total replacement of methionine by selenomethionine in the proteins of Escherichia coli. Comptes Rendus 244:680–683

    CAS  Google Scholar 

  • Correa F, Farah CS (2005) Using 5-hydroxytryptophan as a probe to follow protein—protein interactions and protein folding transitions. Protein Pept Lett 12:241–244

    PubMed  CAS  Google Scholar 

  • Cowie DB, Cohen GN (1957) Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochim Biophys Acta 26:252–261

    PubMed  CAS  Google Scholar 

  • Cowie DB, Cohen GN, Bolton ET, Derobichonszulmajster H (1959) Amino acid analog incorporation into bacterial proteins. Biochim Biophys Acta 34:39–46

    PubMed  CAS  Google Scholar 

  • Datta D, Wang P, Carrico IS, Mayo SL, Tirrell DA (2002) A designed phenylalanyl-tRNA syn- thetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. J Am Chem Soc 124:5652–5653

    PubMed  CAS  Google Scholar 

  • Deiters A, Schultz PG (2005) In vivo incorporation of an alkyne into proteins in Escherichia coli. Bioorg Med Chem Lett 15:1521–1524

    PubMed  CAS  Google Scholar 

  • Deiters A, Cropp TA, Summerer D, Mukherji M, Schultz PG (2004) Site-specific PEGylation of proteins containing unnatural amino acids. Bioorg Med Chem Lett 14:5743–5745

    PubMed  CAS  Google Scholar 

  • Deiters A, Groff D, Ryu YH, Xie JM, Schultz PG (2006) A genetically encoded photocaged tyro- sine. Angew Chem Int Edn Engl 45:2728–2731

    CAS  Google Scholar 

  • Deiters A, Cropp TA, Mukherji M, Chin JW, Anderson JC, Schultz PG (2003) Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J Am Chem Soc 125:11782–11783

    PubMed  CAS  Google Scholar 

  • Dibowski H, Schmidtchen FP (1998) Bioconjugation of peptides by palladium-catalyzed C–C cross-coupling in water. Angew Chem Int Edn Engl 37:476–478

    CAS  Google Scholar 

  • Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci USA 103:9482–9487

    PubMed  CAS  Google Scholar 

  • Dougherty DA (2000) Unnatural amino acids as probes of protein structure and function. Curr Opin Chem Biol 4:645–652

    PubMed  CAS  Google Scholar 

  • Drabkin HJ, Park HJ, RajBhandary UL (1996) Amber suppression in mammalian cells dependent upon expression of an Escherichia coli aminoacyl-tRNA synthetase gene. Mol Cell Biol 16:907–913

    PubMed  CAS  Google Scholar 

  • Farrell IS, Toroney R, Hazen JL, Mehl RA, Chin JW (2005) Photo-cross-linking interacting proteins with a genetically encoded benzophenone. Nat Methods 2:377–384

    PubMed  CAS  Google Scholar 

  • Feng T, Tsao ML, Schultz PG (2004) A phage display system with unnatural amino acids. J Am Chem Soc 126:15962–15963

    Google Scholar 

  • Furter R (1998) Expansion of the genetic code: Site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci 7:419–426

    PubMed  CAS  Google Scholar 

  • Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    PubMed  CAS  Google Scholar 

  • Grubbs RH, Chang S (1998) Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 54:4413–4450

    CAS  Google Scholar 

  • Hamada H, Kameshima N, Szymanska A, Wegner K, Lankiewicz L, Shinohara H, Taki M, Sisido M (2005) Position-specific incorporation of a highly photodurable and blue-laser excitable fluorescent amino acid into proteins for fluorescence sensing. Bioorg Med Chem 13:3379–3384

    PubMed  CAS  Google Scholar 

  • Hamano-Takaku F, Iwama T, Saito-Yano S, Takaku K, Monden Y, Kitabatake M, Soll D, Nishimura S (2000) A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem 275:40324–40328

    PubMed  CAS  Google Scholar 

  • Hartman MCT, Josephson K, Szostak JW (2006) Enzymatic aminoacylation of tRNA with unnatural amino acids. Proc Natl Acad Sci USA 103:4356–4361

    PubMed  CAS  Google Scholar 

  • Hendrickson TL, de Crecy-Lagard V, Schimmel P (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem 73:147–176

    PubMed  CAS  Google Scholar 

  • Hendrickson WA, Horton JR, Lemaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD) — a vehicle for direct determination of 3-dimensional structure. EMBO J 9:1665–1672

    PubMed  CAS  Google Scholar 

  • Hermanson GT (1996) Bioconjugate techniques. Academic Press, London

    Google Scholar 

  • Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S (2005) Protein photo- cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat Methods 2:201–206

    PubMed  CAS  Google Scholar 

  • Hoffmanns U, Metzler-Nolte N (2006) Use of the Sonogashira coupling reaction for the “two- step” labeling of phenylalanine peptide side chains with organometallic compounds. Bioconjugate Chem 17:204–213

    CAS  Google Scholar 

  • Hogue CWV, Rasquinha I, Szabo AG, Macmanus JP (1992) A new intrinsic fluorescent-probe for proteins — biosynthetic incorporation of 5-hydroxytryptophan into oncomodulin. FEBS Lett 310:269–272

    PubMed  CAS  Google Scholar 

  • Hohsaka T, Sisido M (2002) Incorporation of non-natural amino acids into proteins. Curr Opin Chem Biol 6:809–815

    PubMed  CAS  Google Scholar 

  • Hohsaka T, Ashizuka Y, Murakami H, Sisido M (2001a) Five-base codons for incorporation of nonnatural amino acids into proteins. Nucleic Acids Res 29:3646–3651

    CAS  Google Scholar 

  • Hohsaka T, Kajihara D, Ashizuka, Y, Murakami H, Sisido M (1999) Efficient incorporation of nonnatural amino acids with large aromatic groups into streptavidin in in vitro protein synthesizing systems. J Am Chem Soc 121:34–40

    CAS  Google Scholar 

  • Hohsaka T, Ashizuka Y, Taira H, Murakami H, Sisido M (2001b) Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system. Biochemistry 40:11060–11064

    CAS  Google Scholar 

  • Hohsaka T, Muranaka N, Komiyama C, Matsui K, Takaura S, Abe R, Murakami H, Sisido M (2004) Position-specific incorporation of dansylated non-natural amino acids into streptavidin by using a four-base codon. FEBS Lett 560:173–177

    PubMed  CAS  Google Scholar 

  • Ibba M, Hennecke H (1995) Relaxing the substrate specificity of an aminoacyl-tRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett 364:272–275

    PubMed  CAS  Google Scholar 

  • Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    PubMed  CAS  Google Scholar 

  • Ibba M, Kast P, Hennecke H (1994) Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry 33:7107–7112

    PubMed  CAS  Google Scholar 

  • Kajihara D (2005) Synthesis and sequence optimization of GFP mutants containing aromatic non- natural amino acids at the Tyr66 position. Protein Eng Des Sel 18:273–278

    PubMed  CAS  Google Scholar 

  • Kajihara D, Abe R, Iijima I, Komiyama C, Sisido, M, Hohsaka T (2006) FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids. Nat Methods 3:923–929

    PubMed  CAS  Google Scholar 

  • Kast P, Hennecke H (1991) Amino acid substrate specificity of Escherichia coli phenylalanyl- tRNA synthetase altered by distinct mutations. J Mol Biol 222:99–124

    PubMed  CAS  Google Scholar 

  • Kiga D, Sakamoto K, Kodama K, Kigawa T, Matsuda T, Yabuki T, Shirouzu M, Harada Y, Nakayama H, Takio K, Hasegawa Y, Endo Y, Hirao I, Yokoyama S (2002) An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci USA 99:9715–9720

    PubMed  CAS  Google Scholar 

  • Kiick KL, van Hest JCM, Tirrell DA (2000) Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of a bacterial expression host. Angew Chem Int Edn Engl 39:2148–2152

    CAS  Google Scholar 

  • Kiick KL, Weberskirch R, Tirrell DA (2001) Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett 502:25–30

    PubMed  CAS  Google Scholar 

  • Kiick KL, Saxon E, Tirrell DA, Bertozzi CR (2002) Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci USA 99:19–24

    PubMed  CAS  Google Scholar 

  • Kirshenbaum K, Carrico IS, Tirrell DA (2002) Biosynthesis of proteins incorporating a versatile set of phenylalanine analogues. ChemBioChem 3:235–237

    PubMed  Google Scholar 

  • Kodama K, Fukuzawa S, Sakamoto K, Nakayama H, Kigawa T, Yabuki T, Matsuda N, Shirouzu M, Takio K, Tachibana K, Yokoyama S (2006a) A new protein engineering approach combining chemistry and biology, part 1; site-specific incorporation of 4-iodo-l- phenylalanine in vitro by using misacylated suppressor tRNA(Phe). ChemBioChem 7: 1577–1581

    CAS  Google Scholar 

  • Kodama K, Fukuzawa S, Nakayama H, Kigawa T, Sakamoto K, Yabuki T, Matsuda N, Shirouzu M, Takio K, Tachibana K, Yokoyama S (2006b) Regioselective carbon–carbon bond formation in proteins with palladium catalysis; new protein chemistry by organometallic chemistry. ChemBioChem 7:134–139

    CAS  Google Scholar 

  • Kohn M, Breinbauer R (2004) The Staudinger ligation — a gift to chemical biology. Angew Chem Int Edn Engl 43:3106–3116

    Google Scholar 

  • Kowal AK, Koehrer C, RajBhandary UL (2001) Twenty-first aminoacyl-tRNA synthetase- suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci USA 98:2268–2273

    PubMed  CAS  Google Scholar 

  • Kukhar VP, Soloshonok VA (1995) Fluorine-containing amino acids: Synthesis and properties. Wiley, New York

    Google Scholar 

  • Kwon I, Kirshenbaum K, Tirrell DA (2003) Breaking the degeneracy of the genetic code. J Am Chem Soc 125:7512–7513

    PubMed  CAS  Google Scholar 

  • Kwon I, Wang P, Tirrell DA (2006) Design of a bacterial host for site-specific incorporation of p-bromophenylalanine into recombinant proteins. J Am Chem Soc 128:11778–11783

    PubMed  CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Pubishers, New York

    Google Scholar 

  • Lawrence DS (2005) The preparation and in vivo applications of caged peptides and proteins. Curr Opin Chem Biol 9:570–575

    PubMed  CAS  Google Scholar 

  • Lee HY, Lee KH, Al-Hashimi HM, Marsh ENG (2006) Modulating protein structure with fluorous amino acids: increased stability and native-like structure conferred on a 4-helix bundle protein by hexafluoroleucine. J Am Chem Soc 128:337–343

    PubMed  CAS  Google Scholar 

  • Lemieux GA, Bertozzi CR (1998) Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol 16:506–513

    PubMed  CAS  Google Scholar 

  • Lemieux GA, de Graffenried CL, Bertozzi CR (2003) A fluorogenic dye activated by the Staudinger ligation. J Am Chem Soc 125:4708–4709

    PubMed  CAS  Google Scholar 

  • Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Edn Engl 41:1053–1057

    CAS  Google Scholar 

  • Li Q, Du HN, Hu HY (2003) Study of protein—protein interactions by fluorescence of tryptophan analogs: application to immunoglobulin G binding domain of streptococcal protein G. Biopolymers 72:116–122

    PubMed  CAS  Google Scholar 

  • Link AJ, Tirrell DA (2003) Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J Am Chem Soc 125:11164–11165

    PubMed  CAS  Google Scholar 

  • Link AJ, Mock ML, Tirrell DA (2003) Non-canonical amino acids in protein engineering. Curr Opin Biotechnol 14:603–609

    PubMed  CAS  Google Scholar 

  • Link AJ, Vink MKS, Tirrell DA (2004) Presentation and detection of azide functionality in bacterial cell surface proteins. J Am Chem Soc 126:10598–10602

    PubMed  CAS  Google Scholar 

  • Link AJ, Vink MKS, Agard NJ, Prescher JA, Bertozzi CR, Tirrell DA (2006) Discovery of ami- noacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc Natl Acad Sci USA 103:10180–10185

    PubMed  CAS  Google Scholar 

  • Liu DR, Schultz PG (1999) Progress toward the evolution of an organism with an expanded genetic code. Proc Natl Acad Sci USA 96:4780–4785

    PubMed  CAS  Google Scholar 

  • Liu HT, Wang L, Brock A, Wong CH, Schultz PG (2003) A method for the generation of glyco- protein mimetics. J Am Chem Soc 125:1702–1703

    PubMed  CAS  Google Scholar 

  • Miller JC, Silverman SK, England PM, Dougherty DA, Lester HA (1998) Flash decaging of tyro- sine sidechains in an ion channel. Neuron 20:619–624

    PubMed  CAS  Google Scholar 

  • Mock ML, Michon T, van Hest JCM, Tirrell DA (2006) Stereoselective incorporation of an unsaturated isoleucine analogue into a protein expressed in E. coli. ChemBioChem 7:83–87

    PubMed  CAS  Google Scholar 

  • Mohammadi F, Prentice GA, Merrill AR (2001) Protein–protein interaction using tryptophan analogues: novel spectroscopic probes for toxin-elongation factor-2 interactions. Biochemistry 40:10273–10283

    PubMed  CAS  Google Scholar 

  • Montclare JK, Tirrell DA (2006) Evolving proteins of novel composition. Angew Chem Int Edn Engl 45:4518–4521

    CAS  Google Scholar 

  • Mori H, Ito K (2006) Different modes of SecY—SecA interactions revealed by site-directed in vivo photo-cross-linking. Proc Natl Acad Sci USA 103:16159–16164

    PubMed  CAS  Google Scholar 

  • Munier R, Cohen GN (1956) Incorporation of structural analogues of amino acids in bacterial proteins. Biochim Biophys Acta 21:592–593

    PubMed  CAS  Google Scholar 

  • Murakami H, Hohsaka T, Ashizuka Y, Hashimoto K, Sisido M (2000) Site-directed incorporation of fluorescent nonnatural amino acids into streptavidin for highly sensitive detection of biotin. Biomacromolecules 1:118–125

    PubMed  CAS  Google Scholar 

  • Muralidharan V, Cho JH, Trester-Zedlitz M, Kowalik L, Chait BT, Raleigh DP, Muir TW (2004) Domain-specific incorporation of noninvasive optical probes into recombinant proteins. J Am Chem Soc 126:14004–14012

    PubMed  CAS  Google Scholar 

  • Nakashima H, Hashimoto M, Sadakane Y, Tomohiro T, Hatanaka Y (2006) Simple and versatile method for tagging phenyldiazirine photophores. J Am Chem Soc 128:15092–15093

    PubMed  CAS  Google Scholar 

  • Nakata H, Ohtsuki T, Abe R, Hohsaka T, Sisido M (2006) Binding efficiency of elongation factor Tu to tRNAs charged with nonnatural fluorescent amino acids. Anal Biochem 348:321–323

    PubMed  CAS  Google Scholar 

  • Niemz A, Tirrell DA (2001) Self-association and membrane-binding behavior of melittins containing trifluoroleucine. J Am Chem Soc 123:7407–7413

    PubMed  CAS  Google Scholar 

  • Nitz M, Mezo AR, Ali MH, Imperiali B (2002) Enantioselective synthesis and application of the highly fluorescent and environment-sensitive amino acid 6-(2-dimethylaminonaphthoyl) alanine (DANA). Chem Commun 17:1912–1913

    Google Scholar 

  • Hendrickson WA, Horton JR, Lemaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD) — a vehicle for direct determination of 3-dimensional structure. EMBO J 9:1665–1672

    PubMed  CAS  Google Scholar 

  • Hermanson GT (1996) Bioconjugate techniques. Academic Press, London

    Google Scholar 

  • Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S (2005) Protein photo- cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat Methods 2:201–206

    PubMed  CAS  Google Scholar 

  • Hoffmanns U, Metzler-Nolte N (2006) Use of the Sonogashira coupling reaction for the “two- step” labeling of phenylalanine peptide side chains with organometallic compounds. Bioconjugate Chem 17:204–213

    CAS  Google Scholar 

  • Hogue CWV, Rasquinha I, Szabo AG, Macmanus JP (1992) A new intrinsic fluorescent-probe for proteins — biosynthetic incorporation of 5-hydroxytryptophan into oncomodulin. FEBS Lett 310:269–272

    PubMed  CAS  Google Scholar 

  • Hohsaka T, Sisido M (2002) Incorporation of non-natural amino acids into proteins. Curr Opin Chem Biol 6:809–815

    PubMed  CAS  Google Scholar 

  • Hohsaka T, Ashizuka Y, Murakami H, Sisido M (2001a) Five-base codons for incorporation of nonnatural amino acids into proteins. Nucleic Acids Res 29:3646–3651

    CAS  Google Scholar 

  • Hohsaka T, Kajihara D, Ashizuka, Y, Murakami H, Sisido M (1999) Efficient incorporation of nonnatural amino acids with large aromatic groups into streptavidin in in vitro protein synthesizing systems. J Am Chem Soc 121:34–40

    CAS  Google Scholar 

  • Hohsaka T, Ashizuka Y, Taira H, Murakami H, Sisido M (2001b) Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system. Biochemistry 40:11060–11064

    CAS  Google Scholar 

  • Hohsaka T, Muranaka N, Komiyama C, Matsui K, Takaura S, Abe R, Murakami H, Sisido M (2004) Position-specific incorporation of dansylated non-natural amino acids into streptavidin by using a four-base codon. FEBS Lett 560:173–177

    PubMed  CAS  Google Scholar 

  • Ibba M, Hennecke H (1995) Relaxing the substrate specificity of an aminoacyl-tRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett 364:272–275

    PubMed  CAS  Google Scholar 

  • Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    PubMed  CAS  Google Scholar 

  • Ibba M, Kast P, Hennecke H (1994) Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry 33:7107–7112

    PubMed  CAS  Google Scholar 

  • Kajihara D (2005) Synthesis and sequence optimization of GFP mutants containing aromatic non- natural amino acids at the Tyr66 position. Protein Eng Des Sel 18:273–278

    PubMed  CAS  Google Scholar 

  • Kajihara D, Abe R, Iijima I, Komiyama C, Sisido, M, Hohsaka T (2006) FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids. Nat Methods 3:923–929

    PubMed  CAS  Google Scholar 

  • Kast P, Hennecke H (1991) Amino acid substrate specificity of Escherichia coli phenylalanyl- tRNA synthetase altered by distinct mutations. J Mol Biol 222:99–124

    PubMed  CAS  Google Scholar 

  • Kiga D, Sakamoto K, Kodama K, Kigawa T, Matsuda T, Yabuki T, Shirouzu M, Harada Y, Nakayama H, Takio K, Hasegawa Y, Endo Y, Hirao I, Yokoyama S (2002) An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci USA 99:9715–9720

    PubMed  CAS  Google Scholar 

  • Kiick KL, van Hest JCM, Tirrell DA (2000) Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of a bacterial expression host. Angew Chem Int Edn Engl 39:2148–2152

    CAS  Google Scholar 

  • Kiick KL, Weberskirch R, Tirrell DA (2001) Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett 502:25–30

    PubMed  CAS  Google Scholar 

  • Kiick KL, Saxon E, Tirrell DA, Bertozzi CR (2002) Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci USA 99:19–24

    PubMed  CAS  Google Scholar 

  • Kirshenbaum K, Carrico IS, Tirrell DA (2002) Biosynthesis of proteins incorporating a versatile set of phenylalanine analogues. ChemBioChem 3:235–237

    PubMed  Google Scholar 

  • Kodama K, Fukuzawa S, Sakamoto K, Nakayama H, Kigawa T, Yabuki T, Matsuda N, Shirouzu M, Takio K, Tachibana K, Yokoyama S (2006a) A new protein engineering approach combining chemistry and biology, part 1; site-specific incorporation of 4-iodo-l- phenylalanine in vitro by using misacylated suppressor tRNA(Phe). ChemBioChem 7: 1577–1581

    CAS  Google Scholar 

  • Kodama K, Fukuzawa S, Nakayama H, Kigawa T, Sakamoto K, Yabuki T, Matsuda N, Shirouzu M, Takio K, Tachibana K, Yokoyama S (2006b) Regioselective carbon–carbon bond formation in proteins with palladium catalysis; new protein chemistry by organometallic chemistry. ChemBioChem 7:134–139

    CAS  Google Scholar 

  • Kohn M, Breinbauer R (2004) The Staudinger ligation — a gift to chemical biology. Angew Chem Int Edn Engl 43:3106–3116

    Google Scholar 

  • Kowal AK, Koehrer C, RajBhandary UL (2001) Twenty-first aminoacyl-tRNA synthetase- suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci USA 98:2268–2273

    PubMed  CAS  Google Scholar 

  • Kukhar VP, Soloshonok VA (1995) Fluorine-containing amino acids: Synthesis and properties. Wiley, New York

    Google Scholar 

  • Kwon I, Kirshenbaum K, Tirrell DA (2003) Breaking the degeneracy of the genetic code. J Am Chem Soc 125:7512–7513

    PubMed  CAS  Google Scholar 

  • Kwon I, Wang P, Tirrell DA (2006) Design of a bacterial host for site-specific incorporation of p-bromophenylalanine into recombinant proteins. J Am Chem Soc 128:11778–11783

    PubMed  CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Pubishers, New York

    Google Scholar 

  • Lawrence DS (2005) The preparation and in vivo applications of caged peptides and proteins. Curr Opin Chem Biol 9:570–575

    PubMed  CAS  Google Scholar 

  • Lee HY, Lee KH, Al-Hashimi HM, Marsh ENG (2006) Modulating protein structure with fluorous amino acids: increased stability and native-like structure conferred on a 4-helix bundle protein by hexafluoroleucine. J Am Chem Soc 128:337–343

    PubMed  CAS  Google Scholar 

  • Lemieux GA, Bertozzi CR (1998) Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol 16:506–513

    PubMed  CAS  Google Scholar 

  • Lemieux GA, de Graffenried CL, Bertozzi CR (2003) A fluorogenic dye activated by the Staudinger ligation. J Am Chem Soc 125:4708–4709

    PubMed  CAS  Google Scholar 

  • Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Edn Engl 41:1053–1057

    CAS  Google Scholar 

  • Li Q, Du HN, Hu HY (2003) Study of protein—protein interactions by fluorescence of tryptophan analogs: application to immunoglobulin G binding domain of streptococcal protein G. Biopolymers 72:116–122

    PubMed  CAS  Google Scholar 

  • Link AJ, Tirrell DA (2003) Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J Am Chem Soc 125:11164–11165

    PubMed  CAS  Google Scholar 

  • Link AJ, Mock ML, Tirrell DA (2003) Non-canonical amino acids in protein engineering. Curr Opin Biotechnol 14:603–609

    PubMed  CAS  Google Scholar 

  • Link AJ, Vink MKS, Tirrell DA (2004) Presentation and detection of azide functionality in bacterial cell surface proteins. J Am Chem Soc 126:10598–10602

    PubMed  CAS  Google Scholar 

  • Link AJ, Vink MKS, Agard NJ, Prescher JA, Bertozzi CR, Tirrell DA (2006) Discovery of ami- noacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc Natl Acad Sci USA 103:10180–10185

    PubMed  CAS  Google Scholar 

  • Liu DR, Schultz PG (1999) Progress toward the evolution of an organism with an expanded genetic code. Proc Natl Acad Sci USA 96:4780–4785

    PubMed  CAS  Google Scholar 

  • Liu HT, Wang L, Brock A, Wong CH, Schultz PG (2003) A method for the generation of glyco- protein mimetics. J Am Chem Soc 125:1702–1703

    PubMed  CAS  Google Scholar 

  • Miller JC, Silverman SK, England PM, Dougherty DA, Lester HA (1998) Flash decaging of tyro- sine sidechains in an ion channel. Neuron 20:619–624

    PubMed  CAS  Google Scholar 

  • Mock ML, Michon T, van Hest JCM, Tirrell DA (2006) Stereoselective incorporation of an unsaturated isoleucine analogue into a protein expressed in E. coli. ChemBioChem 7:83–87

    PubMed  CAS  Google Scholar 

  • Mohammadi F, Prentice GA, Merrill AR (2001) Protein–protein interaction using tryptophan analogues: novel spectroscopic probes for toxin-elongation factor-2 interactions. Biochemistry 40:10273–10283

    PubMed  CAS  Google Scholar 

  • Montclare JK, Tirrell DA (2006) Evolving proteins of novel composition. Angew Chem Int Edn Engl 45:4518–4521

    CAS  Google Scholar 

  • Mori H, Ito K (2006) Different modes of SecY—SecA interactions revealed by site-directed in vivo photo-cross-linking. Proc Natl Acad Sci USA 103:16159–16164

    PubMed  CAS  Google Scholar 

  • Munier R, Cohen GN (1956) Incorporation of structural analogues of amino acids in bacterial proteins. Biochim Biophys Acta 21:592–593

    PubMed  CAS  Google Scholar 

  • Murakami H, Hohsaka T, Ashizuka Y, Hashimoto K, Sisido M (2000) Site-directed incorporation of fluorescent nonnatural amino acids into streptavidin for highly sensitive detection of biotin. Biomacromolecules 1:118–125

    PubMed  CAS  Google Scholar 

  • Muralidharan V, Cho JH, Trester-Zedlitz M, Kowalik L, Chait BT, Raleigh DP, Muir TW (2004) Domain-specific incorporation of noninvasive optical probes into recombinant proteins. J Am Chem Soc 126:14004–14012

    PubMed  CAS  Google Scholar 

  • Nakashima H, Hashimoto M, Sadakane Y, Tomohiro T, Hatanaka Y (2006) Simple and versatile method for tagging phenyldiazirine photophores. J Am Chem Soc 128:15092–15093

    PubMed  CAS  Google Scholar 

  • Nakata H, Ohtsuki T, Abe R, Hohsaka T, Sisido M (2006) Binding efficiency of elongation factor Tu to tRNAs charged with nonnatural fluorescent amino acids. Anal Biochem 348:321–323

    PubMed  CAS  Google Scholar 

  • Niemz A, Tirrell DA (2001) Self-association and membrane-binding behavior of melittins containing trifluoroleucine. J Am Chem Soc 123:7407–7413

    PubMed  CAS  Google Scholar 

  • Nitz M, Mezo AR, Ali MH, Imperiali B (2002) Enantioselective synthesis and application of the highly fluorescent and environment-sensitive amino acid 6-(2-dimethylaminonaphthoyl) alanine (DANA). Chem Commun 17:1912–1913

    Google Scholar 

  • Ohtsuki T, Manabe T, Sisido M (2005) Multiple incorporation of non-natural amino acids into a single protein using tRNAs with non-standard structures. FEBS Lett 579:6769–6774

    PubMed  CAS  Google Scholar 

  • Ojida A, Tsutsumi H, Kasagi N, Hamachi I (2005) Suzuki coupling for protein modification. Tetrahedron Lett 46:3301–3305

    CAS  Google Scholar 

  • Pal PP, Bae JH, Azim MK, Hess P, Friedrich R, Huber R, Moroder L, Budisa N (2005) Structural and spectral response of Aequorea victoria green fluorescent proteins to chromophore fluorination. Biochemistry 44:3663–3672

    PubMed  CAS  Google Scholar 

  • Panchenko T, Zhu WW, Montclare JK (2006) Influence of global fluorination on chloramphenicol acetyltransferase activity and stability. Biotechnol Bioeng 94:921–930

    PubMed  CAS  Google Scholar 

  • Pardee AB, Shore VG, Prestidge LS (1956) Incorporation of azatryptophan into proteins of bacteria and bacteriophage. Biochim Biophys Acta 21 (2):406–407

    PubMed  CAS  Google Scholar 

  • Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self- assembling artificial proteins. Science 281:389–392

    PubMed  CAS  Google Scholar 

  • Philipson KD, Gallivan JP, Brandt GS, Dougherty DA, Lester HA (2001) Incorporation of caged cysteine and caged tyrosine into a transmembrane segment of the nicotinic ACh receptor. Am J Physiol Cell Physiol 281:C195–C206

    PubMed  CAS  Google Scholar 

  • Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1:13–21

    PubMed  CAS  Google Scholar 

  • Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430:873–877

    PubMed  CAS  Google Scholar 

  • Ratnaparkhi GS, Ramachandran S, Udgaonkar JB, Varadarajan R (1998) Discrepancies between the NMR and X-ray structures of uncomplexed barstar: analysis suggests that packing densities of protein structures determined by NMR are unreliable. Biochemistry 37:6958–6966

    PubMed  CAS  Google Scholar 

  • Rennert OM, Anker HS (1963) On incorporation of 5′,5′,5′-trifluoroleucine into proteins of E. coli. Biochemistry 2:471–476

    PubMed  CAS  Google Scholar 

  • Rodriguez EA, Lester HA, Dougherty DA (2006) In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression. Proc Natl Acad Sci USA 103: 8650–8655

    PubMed  CAS  Google Scholar 

  • Rodriguez EC, Marcaurelle LA, Bertozzi CR (1998) Aminooxy-, hydrazide-, and thiosemicarbazide- functionalized saccharides: versatile reagents for glycoconjugate synthesis. J Org Chem 63: 7134–7135

    PubMed  CAS  Google Scholar 

  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Edn Engl 41:2596–2599

    CAS  Google Scholar 

  • Rothman DM, Petersson EJ, Vazquez ME, Brandt GS, Dougherty DA, Imperiali B (2005) Caged phosphoproteins. J Am Chem Soc 127:846–847

    PubMed  CAS  Google Scholar 

  • Sadakane Y, Hatanaka Y (2006) Photochemical fishing approaches for identifying target proteins and elucidating the structure of a ligand-binding region using carbene-generating photoreac- tive probes. Anal Sci 22:209–218

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Hayashi A, Sakamoto A, Kiga D, Nakayama H, Soma A, Kobayashi T, Kitabatake M, Takio K, Saito K, Shirouzu M, Hirao I, Yokoyama S (2002) Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res 30: 4692–4699

    PubMed  CAS  Google Scholar 

  • Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    PubMed  CAS  Google Scholar 

  • Schafmeister CE, Po J, Verdine GL (2000) An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 122:5891–5892

    CAS  Google Scholar 

  • Sivakumar K, Xie F, Cash BM, Long S, Barnhill HN, Wang Q (2004) A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org Lett 6:4603–4606

    PubMed  CAS  Google Scholar 

  • Son S, Tanrikulu IC, Tirrell DA (2006) Stabilization of bzip peptides through incorporation of fluorinated aliphatic residues. ChemBioChem 7:1251–1257

    PubMed  CAS  Google Scholar 

  • Suchanek M, Radzikowska A, Thiele C (2005) Photo-leucine and photo-methionine allow identification of protein—protein interactions in living cells. Nat Methods 2:261–267

    PubMed  CAS  Google Scholar 

  • Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG (2006) A genetically encoded fluorescent amino acid. Proc Natl Acad Sci USA 103:9785–9789

    PubMed  CAS  Google Scholar 

  • Taki M, Hohsaka T, Murakami H, Taira K, Sisido M (2001) A non-natural amino acid for efficient incorporation into proteins as a sensitive fluorescent probe. FEBS Lett 507:35–38

    PubMed  CAS  Google Scholar 

  • Taki M, Hohsaka T, Murakami H, Taira K, Sisido M (2002) Position-specific incorporation of a fluoro- phore-quencher pair into a single streptavidin through orthogonal four-base codon/anticodon pairs. J Am Chem Soc 124:14586–14590

    PubMed  CAS  Google Scholar 

  • Tang Y, Tirrell DA (2001) Biosynthesis of a highly stable coiled-coil protein containing hexafluo- roleucine in an engineered bacterial host. J Am Chem Soc 123:11089–11090

    PubMed  CAS  Google Scholar 

  • Tang Y, Ghirlanda G, Petka WA, Nakajima T, DeGrado WF, Tirrell DA (2001a) Fluorinated coiled-coil proteins prepared in vivo display enhanced thermal and chemical stability. Angew Chem Int Edn Engl 40:1494–1496

    CAS  Google Scholar 

  • Tang Y, Ghirlanda G, Vaidehi N, Kua J, Mainz DT, Goddard WA, DeGrado WF, Tirrell DA (2001b) Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 40:2790–2796

    CAS  Google Scholar 

  • Tong YH, Brandt GS, Li M, Shapovalov G, Slimko E, Karschin A, Dougherty DA, Lester HA (2001) Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel. J Gen Physiol 117:103–118

    PubMed  CAS  Google Scholar 

  • Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: 1,2,3-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    PubMed  CAS  Google Scholar 

  • Tsao ML, Tian F, Schultz PG (2005) Selective Staudinger modification of proteins containing p-azidophenylalanine. ChemBioChem 6:2147–2149

    PubMed  CAS  Google Scholar 

  • Tsao ML, Summerer D, Ryu YH, Schultz PG (2006) The genetic incorporation of a distance probe into proteins in Escherichia coli. J Am Chem Soc 128:4572–4573

    PubMed  CAS  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–44

    PubMed  CAS  Google Scholar 

  • van Hest JCM, Kiick KL, Tirrell DA (2000) Efficient incorporation of unsaturated methionine analogues into proteins in vivo. J Am Chem Soc 122:1282–1288

    Google Scholar 

  • Walsh CT (2006) Posttranslational modification of proteins: Expanding nature's inventory. Roberts and Company Publishers, Englewood

    Google Scholar 

  • Wang J, Xie J, Schultz PG (2006) A genetically encoded fluorescent amino acid. J Am Chem Soc 128:8738–8739

    PubMed  CAS  Google Scholar 

  • Wang L, Schultz PG (2005) Expanding the genetic code. Angew Chem Int Edn Engl 44:34–66

    CAS  Google Scholar 

  • Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500

    PubMed  CAS  Google Scholar 

  • Wang L, Zhang ZW, Brock A, Schultz PG (2003a) Addition of the keto functional group to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 100:56–61

    CAS  Google Scholar 

  • Wang L, Xie JM, Deniz AA, Schultz PG (2003b) Unnatural amino acid mutagenesis of green fluorescent protein. J Org Chem 68:174–176

    CAS  Google Scholar 

  • Wang P, Fichera A, Kumar K, Tirrell DA (2004) Alternative translations of a single RNA message: an identity switch of (2S,3R)-4,4,4-trifluorovaline between valine and isoleucine codons. Angew Chem Int Edn Engl 43:3664–3666

    CAS  Google Scholar 

  • Wu N, Deiters A, Cropp TA, King D, Schultz PG (2004) A genetically encoded photocaged amino acid. J Am Chem Soc 126:14306–14307

    PubMed  CAS  Google Scholar 

  • Xie JM, Schultz PG (2005) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9:548–554

    PubMed  CAS  Google Scholar 

  • Yoder NC, Kumar K (2002) Fluorinated amino acids in protein design and engineering. Chem Soc Rev 31:335–341

    PubMed  CAS  Google Scholar 

  • Zeng H, Xie J, Schultz PG (2006) Genetic introduction of a diketone-containing amino acid into protiens. Bioorg Med Chem Lett 16:5356–5359

    PubMed  CAS  Google Scholar 

  • Zhang KC, Diehl MR, Tirrell DA (2005) Artificial polypeptide scaffold for protein immobilization. J Am Chem Soc 127:10136–10137

    PubMed  CAS  Google Scholar 

  • Zhang ZW, Wang L, Brock A, Schultz PG (2002) The selective incorporation of alkenes into proteins in Escherichia coli. Angew Chem Int Edn Engl 41:2840–2842

    CAS  Google Scholar 

  • Zhang ZW, Smith BAC, Wang L, Brock A, Cho C, Schultz, PG (2003) A new strategy for the site-specific modification of proteins in vivo. Biochemistry 42:6735–6746

    PubMed  CAS  Google Scholar 

  • Zhang ZW, Alfonta L, Tian F, Bursulaya B, Uryu S, King DS, Schultz PG (2004a) Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc Natl Acad Sci USA 101:8882–8887

    CAS  Google Scholar 

  • Zhang ZW, Gildersleeve J, Yang Y Y, Xu R, Loo JA, Uryu S, Wong CH, Schultz PG (2004b) A new strategy for the synthesis of glycoproteins. Science 303:371–373

    CAS  Google Scholar 

  • Zhou Z, Fahrni CJ (2004) A fluorogenic probe for the copper(I)-catalyzed azide—alkyne ligation reaction: modulation of the fluorescence emission via (3)(n,pi*)-(1)(pi,pi*) inversion. J Am Chem Soc 126:8862–8863

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beatty, K.E., Tirrell, D.A. (2009). Noncanonical Amino Acids in Protein Science and Engineering. In: Köhrer, C., RajBhandary, U.L. (eds) Protein Engineering. Nucleic Acids and Molecular Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70941-1_5

Download citation

Publish with us

Policies and ethics