Skip to main content

Native Chemical Ligation: SemiSynthesis of Post-translationally Modified Proteins and Biological Probes

  • Chapter
Protein Engineering

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 22))

Native chemical ligation (NCL) is a chemoselective reaction that joins synthetic or recombinant peptide and protein fragments through a native peptide bond. Advances in generating the required peptide and protein components for NCL have enabled the homogeneous incorporation of unnatural amino acids, fluorescent probes, and other modifications into protein domains and full-length proteins. The resulting semisynthetic proteins, which can be made in multi-milligram quantities, may be used in biophysical and biochemical studies to address challenging biological problems not accessible with traditional methods. This chapter provides an overview of NCL, including relevant design considerations and technological advances, and a discussion of recent applications that apply protein-based probes accessed through NCL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alsina J, Yokum TS, Albericio F, Barany G (1999) Backbone amide linker (BAL) strategy for Nα-9-fluorenylmethoxycarbonyl (Fmoc) solid-phase synthesis of unprotected peptide p-nitroanilides and thioesters. J Org Chem 64:8761–8769

    Article  PubMed  CAS  Google Scholar 

  • Anderson LL, Marshall GR, Crocker E, Smith SO, Baranski TJ (2005) Motion of carboxyl terminus of Gα is restricted upon G protein activation: a solution NMR study using semisynthetic Gα subunits. J Biol Chem 280:31019–31026

    Article  PubMed  CAS  Google Scholar 

  • Arnold U, Hinderaker MP, Nilsson BL, Huck BR, Gellman SH, Raines RT (2002) Protein prosthesis: a semisynthetic enzyme with a β-peptide reverse turn. J Am Chem Soc 124:8522–8523

    Article  PubMed  CAS  Google Scholar 

  • Bang D, Kent SBH (2004) Protein synthesis: a one-pot total synthesis of crambin. Angew Chem Int Ed Engl 43:2534–2538

    Article  PubMed  CAS  Google Scholar 

  • Bang D, Kent SBH (2005) His6 tag-assisted chemical protein synthesis. Proc Natl Acad Sci USA 102:5014–5019

    Article  PubMed  CAS  Google Scholar 

  • Bang D, Makhatadze GI, Tereshko V, Kossiakoff AA, Kent SB (2005) Total chemical synthesis and X-ray crystal structure of a protein diastereomer: [d-gln 35]ubiquitin. Angew Chem Int Ed Engl 44:3852–3856

    Article  PubMed  CAS  Google Scholar 

  • Bang D, Pentelute BL, Gates ZP, Kent SB (2006) Direct on-resin synthesis of peptide-α-thiophe-nylesters for use in native chemical ligation. Org Lett 8:1049–1052

    Article  PubMed  CAS  Google Scholar 

  • Becker CFW, Hunter CL, Seidel R, Kent SBH, Goody RS, Engelhard M (2003) Total chemical synthesis of a functional interacting protein pair: the protooncogene H-Ras and the Ras-binding domain of its effector c-Raf1. Proc Natl Acad Sci USA 100:5075–5080

    Article  PubMed  CAS  Google Scholar 

  • Becker CFW, Lausecker K, Balog M, Kalai T, Hideg K, Steinhoff H-J, Engelhard M (2005) Incorporation of spin-labelled amino acids into proteins. Magn Reson Chem 43:S34–S39

    Article  PubMed  CAS  Google Scholar 

  • Berry SM, Ralle M, Low DW, Blackburn NJ, Lu Y (2003) Probing the role of axial methionine in the blue copper center of azurin with unnatural amino acids. J Am Chem Soc 125: 8760–8768

    Article  PubMed  CAS  Google Scholar 

  • Blaschke UK, Cotton GJ, Muir TW (2000) Synthesis of multi-domain proteins using expressed protein ligation: strategies for segmental isotopic labeling of internal regions. Tetrahedron 56:9461–9470

    Article  CAS  Google Scholar 

  • Botti P, Carrasco MR, Kent SBH (2001) Native chemical ligation using removable Nα-(1-phenyl-2-mercaptoethyl) auxiliaries. Tetrahedron Lett 42:1831–1833

    Article  CAS  Google Scholar 

  • Brask J, Albericio F, Jensen KJ (2003) Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters. Org Lett 5:2951–2953

    Article  PubMed  CAS  Google Scholar 

  • Brunsveld L, Watzke A, Durek T, Alexandrov K, Goody RS, Waldmann H (2005) Synthesis of functionalized Rab GTPases by a combination of solution- or solid-phase lipopeptide synthesis with expressed protein ligation. Chem-Eur J 11:2756–2772

    Article  CAS  Google Scholar 

  • Bu X, Xie G, Law CW, Guo Z (2002) An improved deblocking agent for direct Fmoc solid-phase synthesis of peptide thioesters. Tetrahedron Lett 43:2419–2422

    Article  CAS  Google Scholar 

  • Camarero JA, Mitchell AR (2005) Synthesis of proteins by native chemical ligation using Fmoc-based chemistry. Protein Peptide Lett 12:723–728

    Article  CAS  Google Scholar 

  • Camarero JA, Fushman D, Cowburn D, Muir TW (2001) Peptide chemical ligation inside living cells: In vivo generation of a circular protein domain. Bioorg Med Chem 9:2479–2484

    Article  PubMed  CAS  Google Scholar 

  • Camarero JA, Cheung CL, Coleman MA, De Yoreo JJ (2004a) Chemoselective attachment of biologically active proteins to surfaces by native chemical ligation. Mater Res Soc Symp Proc EXS-1:237–239

    Google Scholar 

  • Camarero JA, Hackel BJ, de Yoreo JJ, Mitchell AR (2004b) Fmoc-based synthesis of peptide alpha-thioesters using an aryl hydrazine support. J Org Chem 69:4145–4151

    Article  CAS  Google Scholar 

  • Canne LE, Walker SM, Kent SBH (1995) A general method for the synthesis of thioester resin linkers for use in the solid phase synthesis of peptide-α-thioacids. Tetrahedron Lett 36: 1217–1220

    Article  CAS  Google Scholar 

  • Canne LE, Bark SJ, Kent SBH (1996) Extending the applicability of native chemical ligation. J Am Chem Soc 118:5891–5896

    Article  CAS  Google Scholar 

  • Chong S, Xu MQ (2005) Harnessing inteins for protein purification and characterization. In: Gross HJ (ed) Nucleic acids and molecular biology, vol 16. Springer, Berlin, pp 273–292

    Google Scholar 

  • Chong S, Shao Y, Paulus H, Benner J, Perler FB, Xu M-Q (1996) Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem 271:22159–22168

    Article  PubMed  CAS  Google Scholar 

  • Cotton GJ, Muir TW (2000) Generation of a dual-labeled fluorescence biosensor for Crk-II phos-phorylation using solid-phase expressed protein ligation. Chem Biol 7:253–261

    Article  PubMed  CAS  Google Scholar 

  • Cotton GJ, Ayers B, Xu R, Muir TW (1999) Insertion of a synthetic peptide into a recombinant protein framework: a protein biosensor. J Am Chem Soc 121:1100–1101

    Article  CAS  Google Scholar 

  • David R, Richter MP, Beck-Sickinger AG (2004) Expressed protein ligation. Method and applications. Eur J Biochem 271:663–677

    Article  PubMed  CAS  Google Scholar 

  • Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science (Washington, DC) 266:776–779

    Article  PubMed  CAS  Google Scholar 

  • Dawson PE, Churchill M, Ghadiri MR, Kent SBH (1997) Modulation of reactivity in native chemical ligation through the use of thiol additives. J Am Chem Soc 119:4325–4329

    Article  CAS  Google Scholar 

  • Durek T, Alexandrov K, Goody RS, Hildebrand A, Heinemann I, Waldmann H (2004) Synthesis of fluorescently labeled mono- and diprenylated Rab7 GTPase. J Am Chem Soc 126:16368–16378

    Article  PubMed  CAS  Google Scholar 

  • Erlanson DA, Chytil M, Verdine GL (1996) The leucine zipper domain controls the orientation of AP-1 in the NFAT.AP-1.DNA complex. Chem Biol 3:981–991

    CAS  Google Scholar 

  • Evans TC, Jr., Benner J, Xu M-Q (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7:2256–2264

    Article  PubMed  CAS  Google Scholar 

  • Flavell RR, Huse M, Goger M, Trester-Zedlitz M, Kuriyan J, Muir TW (2002) Efficient semisynthesis of a tetraphosphorylated analogue of the type I TGFbeta receptor. Org Lett 4:165–168

    Article  PubMed  CAS  Google Scholar 

  • Futaki S, Sogawa K, Maruyama J, Asahara T, Niwa M (1997) Preparation of peptide thioesters using Fmoc-solid-phase peptide synthesis and its application to the construction of a template-assembled synthetic protein (TASP). Tetrahedron Lett 38:6237–6240

    Article  CAS  Google Scholar 

  • Gieselman MD, Xie L, van der Donk WA (2001) Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org Lett 3:1331–1334

    Article  PubMed  CAS  Google Scholar 

  • Girish A, Sun H, Yeo DSY, Chen GYJ, Chua T-K, Yao SQ (2005) Site-specific immobilization of proteins in a microarray using intein-mediated protein splicing. Bioorg Med Chem Lett 15:2447–2451

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb D, Grunwald C, Nowak C, Kuhlmann J, Waldmann H (2006) Intein-mediated in vitro synthesis of lipidated Ras proteins. Chem Commun 260–262

    Google Scholar 

  • Grant JE, Guo L-W, Vestling MM, Martemyanov KA, Arshavsky VY, Ruoho AE (2006) The N terminus of GTPyS-activated transducin α-subunit interacts with the C terminus of the cGMP phosphodiesterase y-subunit. J Biol Chem 281:6194–6202

    Article  PubMed  CAS  Google Scholar 

  • Grogan MJ, Pratt MR, Marcaurelle LA, Bertozzi CR (2002) Homogeneous glycopeptides and glycoproteins for biological investigation. Annu Rev Biochem 71:593–634

    Article  PubMed  CAS  Google Scholar 

  • Grogan MJ, Kaizuka Y, Conrad RM, Groves JT, Bertozzi CR (2005) Synthesis of lipidated green fluorescent protein and its incorporation in supported lipid bilayers. J Am Chem Soc 127: 14383–14387

    Article  PubMed  CAS  Google Scholar 

  • Gross CM, Lelievre D, Woodward CK, Barany G (2005) Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nα-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine. J Pept Res 65:395–410

    Article  PubMed  CAS  Google Scholar 

  • Hackenberger CPR, Friel CT, Radford SE, Imperiali B (2005) Semisynthesis of a glycosylated Im7 analogue for protein folding studies. J Am Chem Soc 127:12882–12889

    Article  PubMed  CAS  Google Scholar 

  • Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci USA 96:10068–10073

    Article  PubMed  CAS  Google Scholar 

  • Hahn ME, Muir TW (2004) Bioorganic chemistry: Photocontrol of Smad2, a multiphosphorylated cell-signaling protein, through caging of activating phosphoserines. Angew Chem Int Ed Engl 43:5800–5803

    Article  PubMed  CAS  Google Scholar 

  • He S, Bauman D, Davis Jamaine S, Loyola A, Nishioka K, Gronlund Jennifer L, Reinberg D, Meng F, Kelleher N, McCafferty Dewey G (2003) Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis. Proc Natl Acad Sci USA 100:12033–12038

    Article  PubMed  CAS  Google Scholar 

  • Hojo H, Haginoya E, Matsumoto Y, Nakahara Y, Nabeshima K, Toole BP, Watanabe Y (2003) The first synthesis of peptide thioester carrying N-linked core pentasaccharide through modified Fmoc thioester preparation: synthesis of an N-glycosylated Ig domain of emmprin. Tetrahedron Lett 44:2961–2964

    Article  CAS  Google Scholar 

  • Huse M, Holford MN, Kuriyan J, Muir TW (2000) Semisynthesis of hyperphosphorylated type I TGFβ receptor: addressing the mechanism of kinase activation. J Am Chem Soc 122: 8337–8338

    Article  CAS  Google Scholar 

  • Ingenito R, Bianchi E, Fattori D, Pessi A (1999) Solid phase synthesis of peptide C-terminal thioesters by Fmoc/t-Bu chemistry. J Am Chem Soc 121:11369–11374

    Article  CAS  Google Scholar 

  • Jantz D, Berg JM (2003) Expanding the DNA-recognition repertoire for zinc finger proteins beyond 20 amino acids. J Am Chem Soc 125:4960–4961

    Article  PubMed  CAS  Google Scholar 

  • Jantz D, Berg JM (2004) Reduction in DNA-binding affinity of Cys2His2 zinc finger proteins by linker phosphorylation. Proc Natl Acad Sci USA 101:7589–7593

    Article  PubMed  CAS  Google Scholar 

  • Johnson ECB, Kent SBH (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 128:6640–6646

    Article  PubMed  CAS  Google Scholar 

  • Kawakami T, Sumida M, Nakamura Ki, Vorherr T, Aimoto S (2005) Peptide thioester preparation based on an N—S acyl shift reaction mediated by a thiol ligation auxiliary. Tetrahedron Lett 46:8805–8807

    Article  CAS  Google Scholar 

  • Lesaicherre M-L, Lue RYP, Chen GYJ, Zhu Q, Yao SQ (2002) Intein-mediated biotinylation of proteins and its application in a protein microarray. J Am Chem Soc 124:8768–8769

    Article  PubMed  CAS  Google Scholar 

  • Li X, Kawakami T, Aimoto S (1998) Direct preparation of peptide thioesters using an Fmoc solid-phase method. Tetrahedron Lett 39:8669–8672

    Article  CAS  Google Scholar 

  • Lovrinovic M, Seidel R, Wacker R, Schroeder H, Seitz O, Engelhard M, Goody RS, Niemeyer CM (2003) Synthesis of protein-nucleic acid conjugates by expressed protein ligation. Chem Commun 822–823

    Google Scholar 

  • Lu W, Gong D, Bar-Sagi D, Cole PA (2001) Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol Cell 8:759–769

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Shen K, Cole PA (2003) Chemical dissection of the effects of tyrosine phosphorylation of SHP-2. Biochemistry 42:5461–5468

    Article  PubMed  CAS  Google Scholar 

  • Maag D, Lorsch JR (2003) Communication between eukaryotic translation initiation factors 1 and 1A on the yeast small ribosomal subunit. J Mol Biol 330:917–924

    Article  PubMed  CAS  Google Scholar 

  • Macmillan D, Anderson DW (2004) Rapid synthesis of acyl transfer auxiliaries for cysteine-free native glycopeptide ligation. Org Lett 6:4659–4662

    Article  PubMed  CAS  Google Scholar 

  • Macmillan D, Arham L (2004) Cyanogen bromide cleavage generates fragments suitable for expressed protein and glycoprotein ligation. J Am Chem Soc 126:9530–9531

    Article  PubMed  CAS  Google Scholar 

  • Macmillan D, Bertozzi CR (2000) New directions in glycoprotein engineering. Tetrahedron 56: 9515–9525

    Article  CAS  Google Scholar 

  • Macmillan D, Bertozzi CR (2004) Modular assembly of glycoproteins: towards the synthesis of GlyCAM-1 by using expressed protein ligation. Angew Chem Int Ed Engl 43:1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Marcaurelle LA, Mizoue LS, Wilken J, Oldham L, Kent SB, Handel TM, Bertozzi CR (2001) Chemical synthesis of lymphotactin: a glycosylated chemokine with a C-terminal mucin-like domain. Chemistry (Weinheim an der Bergstrasse, Germany) 7:1129–1132

    CAS  Google Scholar 

  • Marinzi C, Offer J, Longhi R, Dawson PE (2004) An o-nitrobenzyl scaffold for peptide ligation: synthesis and applications. Bioorg Med Chem 12:2749–2757

    Article  PubMed  CAS  Google Scholar 

  • Mezo AR, Cheng RP, Imperiali B (2001) Oligomerization of uniquely folded mini-protein motifs: development of a homotrimeric ββα peptide. J Am Chem Soc 123:3885–3891

    Article  PubMed  CAS  Google Scholar 

  • Miller JS, Dudkin VY, Lyon GJ, Muir TW, Danishefsky SJ (2003) Toward fully synthetic N-linked glycoproteins. Angew Chem Int Ed Engl 42:431–434

    Article  PubMed  CAS  Google Scholar 

  • Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289

    Article  PubMed  CAS  Google Scholar 

  • Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci USA 95:6705–6710

    Article  PubMed  CAS  Google Scholar 

  • Muralidharan V, Cho J, Trester-Zedlitz M, Kowalik L, Chait BT, Raleigh DP, Muir TW (2004) Domain-specific incorporation of noninvasive optical probes into recombinant proteins. J Am Chem Soc 126:14004–14012

    Article  PubMed  CAS  Google Scholar 

  • Ottesen JJ, Huse M, Sekedat MD, Muir TW (2004) Semisynthesis of phosphovariants of Smad2 reveals substrate preference of activated TβRI kinase. Biochemistry 43:5698–5706

    Article  PubMed  CAS  Google Scholar 

  • Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69:447–496

    Article  PubMed  CAS  Google Scholar 

  • Richter MPO, Holland-Nell K, Beck-Sickinger AG (2004) Site specific biotinylation of the human aldo/keto reductase AKR1A1 for immobilization. Tetrahedron 60:7507–7513

    Article  CAS  Google Scholar 

  • Scheibner KA, Zhang Z, Cole PA (2003) Merging fluorescence resonance energy transfer and expressed protein ligation to analyze protein—protein interactions. Anal Biochem 317:226–232

    Article  PubMed  CAS  Google Scholar 

  • Schwarzer D, Cole PA (2005) Protein semisynthesis and expressed protein ligation: chasing a protein's tail. Curr Opin Chem Biol 9:561–569

    Article  PubMed  CAS  Google Scholar 

  • Schwarzer D, Zhang Z, Zheng W, Cole PA (2006) Negative regulation of a protein tyrosine phosphatase by tyrosine phosphorylation. J Am Chem Soc 128:4192–4193

    Article  PubMed  CAS  Google Scholar 

  • Severinov K, Muir TW (1998) Expressed protein ligation, a novel method for studying protein—protein interaction in transcription. J Biol Chem 273:16205–16209

    Article  PubMed  CAS  Google Scholar 

  • Shen K, Cole PA (2003) Conversion of a tyrosine kinase protein substrate to a high affinity ligand by ATP linkage. J Am Chem Soc 125:16172–16173

    Article  PubMed  CAS  Google Scholar 

  • Shin Y, Winans KA, Backes BJ, Kent SBH, Ellman JA, Bertozzi CR (1999) Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation. J Am Chem Soc 121:11684–11689

    Article  CAS  Google Scholar 

  • Shogren-Knaak MA, Peterson CL (2004) Creating designer histones by native chemical ligation. Methods Enzymol 375:62–76, 61 Plate

    Article  PubMed  CAS  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun J-M, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science (Washington, DC) 311:844–847

    Article  CAS  Google Scholar 

  • Tolbert TJ, Wong CH (2002) New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation. Angew Chem Int Ed Engl 41:2171–2174

    Article  CAS  PubMed  Google Scholar 

  • Tolbert TJ, Franke D, Wong C-H (2005) A new strategy for glycoprotein synthesis: ligation of synthetic glycopeptides with truncated proteins expressed in E. coli as TEV protease cleavable fusion protein. Bioorg Med Chem 13:909–915

    Article  PubMed  CAS  Google Scholar 

  • Ueda S, Fujita M, Tamamura H, Fujii N, Otaka A (2005) Photolabile protection for one-pot sequential native chemical ligation. Chem BioChem 6:1983–1986

    CAS  Google Scholar 

  • Villain M, Vizzavona J, Rose K (2001) Covalent capture: a new tool for the purification of synthetic and recombinant polypeptides. Chem Biol 8:673–679

    Article  PubMed  CAS  Google Scholar 

  • Villain M, Gaertner H, Botti P (2003) Native chemical ligation with aspartic and glutamic acids as C-terminal residues: scope and limitations. Eur J Org Chem 3267–3272

    Google Scholar 

  • Vogel EM, Imperiali B (2007) Semisynthesis of unnatural amino acid mutants of paxillin: protein probes for cell migration studies. Prot Sci 16:550–556

    Article  CAS  Google Scholar 

  • von Eggelkraut-Gottanka R, Klose A, Beck-Sickinger AG, Beyermann M (2003) Peptide α-thioester formation using standard Fmoc-chemistry. Tetrahedron Lett 44:3551–3554

    Article  CAS  Google Scholar 

  • Walsh CT (2006) Posttranslational modification of proteins: expanding nature's inventory. Roberts & Company, Englewood

    Google Scholar 

  • Wang D, Cole PA (2001) Protein tyrosine kinase Csk-catalyzed phosphorylation of Src containing unnatural tyrosine analogues. J Am Chem Soc 123:8883–8886

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Ayers B, Cowburn D, Muir TW (1999) Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci USA 96:388–393

    Article  PubMed  CAS  Google Scholar 

  • Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123:526–533

    Article  PubMed  CAS  Google Scholar 

  • Yeo DSY, Srinivasan R, Uttamchandani M, Chen GYJ, Zhu Q, Yao SQ (2003) Cell-permeable small molecule probes for site-specific labeling of proteins. Chem Commun 2870–2871

    Google Scholar 

  • Zhang Z, Shen K, Lu W, Cole PA (2003) The role of C-terminal tyrosine phosphorylation in the regulation of SHP-1 explored via expressed protein ligation. J Biol Chem 278:4668–4674

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Zhang Z, Ganguly S, Weller JL, Klein DC, Cole PA (2003) Cellular stabilization of the melatonin rhythm enzyme induced by nonhydrolyzable phosphonate incorporation. Nat Struct Biol 10:1054–1057

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Schwarzer D, LeBeau A, Weller JL, Klein DC, Cole PA (2005) Cellular stability of serotonin N-acetyltransferase conferred by phosphonodifluoromethylene alanine (Pfa) substitution for Ser-205. J Biol Chem 280:10462–10467

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel Taylor, E., Imperiali, B. (2009). Native Chemical Ligation: SemiSynthesis of Post-translationally Modified Proteins and Biological Probes. In: Köhrer, C., RajBhandary, U.L. (eds) Protein Engineering. Nucleic Acids and Molecular Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70941-1_3

Download citation

Publish with us

Policies and ethics