Skip to main content

Group II Introns and Their Protein Collaborators

  • Chapter
Book cover Non-Protein Coding RNAs

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 13))

Group II introns are an abundant class of autocatalytic introns that excise themselves from precursor mRNAs. Although group II introns are catalytic RNAs, they require the assistance of proteins for efficient splicing in vivo. Proteins that facilitate splicing of organellar group II introns fall into two main categories: intron-encoded maturases and host-encoded proteins. This chapter will focus on the host proteins that group II introns recruited to ensure their function. It will discuss the great diversity of these proteins, define common features, and describe different strategies employed to achieve specificity. Special emphasis will be placed on DEAD-box ATPases, currently the best studied example of host-encoded proteins with a role in group II intron splicing. Since the exact mechanisms by which splicing is facilitated is not known for any of the host proteins, general mechanistic strategies for protein-mediated RNA folding are described and assessed for their potential role in group II intron splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balczun C, Bunse A, Schwarz C, Piotrowski M, Kück U (2006) Chloroplast heat shock protein Cpn60 from Chlamydomonas reinhardtii exhibits a novel function as a group II intron-specific RNA-binding protein. FEBS Lett 580:4527–4532

    Article  Google Scholar 

  • Balczun C, Bunse A, Hahn D, Bennoun P, Nickelsen J, Kück U (2005) Two adjacent nuclear genes are required for functional complementation of a chloroplast trans-splicing mutant from Chlamydomonas reinhardtii. Plant J 43:636–648

    Article  Google Scholar 

  • Barkan A, Klipcan L, Ostersetzer O, Kawamura T, Asakura Y, Watkins KP (2007) The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein. RNA 13:55–64

    Article  Google Scholar 

  • Belfort M, Derbyshire V, Parker MM, Cousineau B, Lambowitz AM (2001) Mobile introns: pathways and proteins. In: NL Craig, R Gragie, M Gellert, AM Lambowitz (eds.) Mobile DNA II. ASM Press, Washington, DC, pp. 761–782

    Google Scholar 

  • Bertrand H, Bridge P, Collins RA, Garriga G, Lambowitz AM (1982) RNA splicing in Neurospora mitochondria. Characterization of new nuclear mutants with defects in splicing the mitochon-drial large rRNA. Cell 29:517–526

    Article  Google Scholar 

  • Bhaskaran H, Russell R (2007) Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449:1014–1018

    Article  ADS  Google Scholar 

  • Bonen L (1993) Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J 7:40–46

    Google Scholar 

  • Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34

    Article  Google Scholar 

  • Bonen L, Vogel J (2001) The ins and outs of group II introns. Trends Genet 17:322–331

    Article  Google Scholar 

  • Chen X, Gutell RR, Lambowitz AM (2000) Function of tyrosyl-tRNA synthetase in splicing group I introns: an induced-fit model for binding to the P4—P6 domain based on analysis of mutations at the junction of the P4—P6 stacked helices. J Mol Biol 301:265–283

    Article  Google Scholar 

  • Chuang RY, Weaver PL, Liu Z, Chang TH (1997) Requirement of the DEAD-Box protein Ded1p for messenger RNA translation. Science 275:1468–1471

    Article  Google Scholar 

  • Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA heli-cases. Gene 367:17–37

    Article  Google Scholar 

  • Costa M, Michel F, Westhof E (2000) A three-dimensional perspective on exon binding by a group II self-splicing intron. EMBO J 19:5007–5018

    Article  Google Scholar 

  • de Lencastre A, Pyle AM (2008) Three essential and conserved regions of the group II intron are proximal to the 5′-splice site. RNA 14:11–24

    Article  Google Scholar 

  • de Lencastre A, Hamill S, Pyle AM (2005) A single active-site region for a group II intron. Nat Struct Mol Biol 12:626–627

    Article  Google Scholar 

  • de Longevialle AF, Meyer EH, Andres C, Taylor NL, Lurin C, Millar AH, Small ID (2007) The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana. Plant Cell 19:3256–3265

    Article  Google Scholar 

  • Del Campo M, Tijerina P, Bhaskaran H, Mohr S, Yang Q, Jankowsky E, Russell R, Lambowitz AM (2007) Do DEAD-box proteins promote group II intron splicing without unwinding RNA? Mol Cell 28:159–166

    Article  Google Scholar 

  • Fedorova O, Zingler N (2007) Group II introns: structure, folding and splicing mechanism. Biol Chem 388:665–678

    Article  Google Scholar 

  • Fedorova O, Waldsich C, Pyle AM (2007) Group II intron folding under near-physiological conditions: collapsing to the near-native state. J Mol Biol 366:1099–1114

    Article  Google Scholar 

  • Ferat JL, Michel F (1993) Group II self-splicing introns in bacteria. Nature 364:358–361

    Article  ADS  Google Scholar 

  • Geddy R, Brown GG (2007) Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genomics 8:130

    Article  Google Scholar 

  • Glanz S, Bunse A, Wimbert A, Balczun C, Kück U (2006) A nucleosome assembly protein-like polypeptide binds to chloroplast group II intron RNA in Chlamydomonas reinhardtii. Nucleic Acids Res 34:5337–5351

    Article  Google Scholar 

  • Goldschmidt-Clermont M, Choquet Y, Girard-Bascou J, Michel F, Schirmer-Rahire M, Rochaix JD (1991) A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell 65:135–143

    Article  Google Scholar 

  • Gregan J, Kolisek M, Schweyen RJ (2001) Mitochondrial Mg2+ homeostasis is critical for group II intron splicing in vivo. Genes Dev 15:2229–2237

    Article  Google Scholar 

  • Grohman JK, Del Campo M, Bhaskaran H, Tijerina P, Lambowitz AM, Russell R (2007) Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA. Biochemistry 46:3013–3022

    Article  Google Scholar 

  • Halls C, Mohr S, Del Campo M, Yang Q, Jankowsky E, Lambowitz AM (2007) Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chap-erone activity. J Mol Biol 365:835–855

    Article  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  ADS  Google Scholar 

  • Herschlag D (1995) RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874

    Google Scholar 

  • Huang HR, Rowe CE, Mohr S, Jiang Y, Lambowitz AM, Perlman PS (2005) The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc Natl Acad Sci U S A 102:163–168

    Article  ADS  Google Scholar 

  • Jenkins BD, Barkan A (2001) Recruitment of a peptidyl-tRNA hydrolase as a facilitator of group II intron splicing in chloroplasts. EMBO J 20:872–879

    Article  Google Scholar 

  • Jenkins BD, Kulhanek DJ, Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9:283–296

    Article  Google Scholar 

  • Kim K, Oh J, Han D, Kim EE, Lee B, Kim Y (2006) Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Biochem Biophys Res Commun 340:1028–1038

    Article  Google Scholar 

  • Knoop V, Altwasser M, Brennicke A (1997) A tripartite group II intron in mitochondria of an angiosperm plant. Mol Gen Genet 255:269–276

    Article  Google Scholar 

  • Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330

    Article  ADS  Google Scholar 

  • Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    Article  Google Scholar 

  • Lambowitz AM, Caprara MG, Zimmerly S, Perlman PS (1999) Group I and group II ribozymes as RNPs: clues to the past and guides to the future. In: RF Gesteland, TR Cech, JF Atkins (eds.) The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 451–485

    Google Scholar 

  • Lehmann K, Schmidt U (2003) Group II introns: structure and catalytic versatility of large natural ribozymes. Crit Rev Biochem Mol Biol 38:249–303

    Article  Google Scholar 

  • Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16: 2089–2103

    Article  Google Scholar 

  • Maris C, Dominguez C, Allain FH (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272:2118–2131

    Article  Google Scholar 

  • Martin W, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45

    Article  ADS  Google Scholar 

  • Martinez-Abarca F, Toro N (2000) Group II introns in the bacterial world. Mol Microbiol 38: 917–926

    Article  Google Scholar 

  • Matsuura M, Noah JW, Lambowitz AM (2001) Mechanism of maturase-promoted group II intron splicing. EMBO J 20:7259–7270

    Article  Google Scholar 

  • Mattick JS (1994) Introns: evolution and function. Curr Opin Genet Dev 4:823–831

    Article  Google Scholar 

  • Merendino L, Perron K, Rahire M, Howald I, Rochaix JD, Goldschmidt-Clermont M (2006) A novel multifunctional factor involved in trans-splicing of chloroplast introns in Chlamydomonas. Nucleic Acids Res 34:262–274

    Article  Google Scholar 

  • Michel F, Ferat JL (1995) Structure and activities of group II introns. Annu Rev Biochem 64:435–461

    Article  Google Scholar 

  • Mohr S, Stryker JM, Lambowitz AM (2002) A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109:769–779

    Article  Google Scholar 

  • Mohr S, Matsuura M, Perlman PS, Lambowitz AM (2006) A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Proc Natl Acad Sci U S A 103:3569–3574

    Article  ADS  Google Scholar 

  • Noah JW, Lambowitz AM (2003) Effects of maturase binding and Mg2+ concentration on group II intron RNA folding investigated by UV cross-linking. Biochemistry 42:12466–12480

    Article  Google Scholar 

  • Ostersetzer O, Cooke AM, Watkins KP, Barkan A (2005) CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17:241–255

    Article  Google Scholar 

  • Ostheimer GJ, Barkan A, Matthews BW (2002) Crystal structure of E. coli YhbY: a representative of a novel class of RNA binding proteins. Structure 10:1593–1601

    Article  Google Scholar 

  • Ostheimer GJ, Williams-Carrier R, Belcher S, Osborne E, Gierke J, Barkan A (2003) Group II intron splicing factors derived by diversification of an ancient RNA-binding domain. EMBO J 22:3919–3929

    Article  Google Scholar 

  • Ostheimer GJ, Hadjivassiliou H, Kloer DP, Barkan A, Matthews BW (2005) Structural analysis of the group II intron splicing factor CRS2 yields insights into its protein and RNA interaction surfaces. J Mol Biol 345:51–68

    Article  Google Scholar 

  • Ostheimer GJ, Rojas M, Hadjivassiliou H, Barkan A (2006) Formation of the CRS2-CAF2 group II intron splicing complex is mediated by a 22-amino acid motif in the COOH-terminal region of CAF2. J Biol Chem 281:4732–4738

    Article  Google Scholar 

  • Perron K, Goldschmidt-Clermont M, Rochaix JD (1999) A factor related to pseudouridine syn-thases is required for chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J 18:6481–6490

    Article  Google Scholar 

  • Perron K, Goldschmidt-Clermont M, Rochaix JD (2004) A multiprotein complex involved in chloroplast group II intron splicing. RNA 10:704–711

    Article  Google Scholar 

  • Price SR, Evans PR, Nagai K (1998) Crystal structure of the spliceosomal U2B″-U2A′ protein complex bound to a fragment of U2 small nuclear RNA. Nature 394:645–650

    Article  ADS  Google Scholar 

  • Pyle AM (2008) Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys 37:317–336

    Article  Google Scholar 

  • Pyle AM, Lambowitz AM (2006) Group II introns: ribozymes that splice RNA and invade DNA. In: RF Gesteland, TR Cech, JF Atkins (eds.) The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 469–506

    Google Scholar 

  • Pyle AM, Fedorova O, Waldsich C (2007) Folding of group II introns: a model system for large, multidomain RNAs? Trends Biochem Sci 32:138–145

    Article  Google Scholar 

  • Russell R (2008) RNA misfolding and the action of chaperones. Front Biosci 13:1–20

    Article  Google Scholar 

  • Saha D, Prasad AM, Srinivasan R (2007) Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol Biochem 45:521–534

    Article  Google Scholar 

  • Schmitt E, Mechulam Y, Fromant M, Plateau P, Blanquet S (1997) Crystal structure at 1.2 A resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase. EMBO J 16:4760–4769

    Article  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663

    Article  Google Scholar 

  • Schock I, Gregan J, Steinhauser S, Schweyen R, Brennicke A, Knoop V (2000) A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24:489–501

    Article  Google Scholar 

  • Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125:287–300

    Article  Google Scholar 

  • Seraphin B, Simon M, Boulet A, Faye G (1989) Mitochondrial splicing requires a protein from a novel helicase family. Nature 337:84–87

    Article  ADS  Google Scholar 

  • Shibuya T, Tange TO, Sonenberg N, Moore MJ (2004) eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat Struct Mol Biol 11: 346–351

    Article  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif — a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  Google Scholar 

  • Solem A, Zingler N, Pyle AM (2006) A DEAD protein that activates intron self-splicing without unwinding RNA. Mol Cell 24:611–617

    Article  Google Scholar 

  • Sosnick TR, Pan T (2003) RNA folding: models and perspectives. Curr Opin Struct Biol 13: 309–316

    Article  Google Scholar 

  • Su LJ, Brenowitz M, Pyle AM (2003) An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J Mol Biol 334:639–652

    Article  Google Scholar 

  • Su LJ, Waldsich C, Pyle AM (2005) An obligate intermediate along the slow folding pathway of a group II intron ribozyme. Nucleic Acids Res 33:6674–6687

    Article  Google Scholar 

  • Swisher JF, Su LJ, Brenowitz M, Anderson VE, Pyle AM (2002) Productive folding to the native state by a group II intron ribozyme. J Mol Biol 315:297–310

    Article  Google Scholar 

  • Tavares-Carreon F, Camacho-Villasana Y, Zamudio-Ochoa A, Shingu-Vazquez M, Torres-Larios A, Perez-Martinez X (2008) The pentatricopeptide repeats present in Pet309 are necessary for translation but not for stability of the mitochondrial COX1 mRNA in yeast. J Biol Chem 283:1472–1479

    Article  Google Scholar 

  • Toor N, Hausner G, Zimmerly S (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–1152

    Article  Google Scholar 

  • Toor N, Keating KS, Taylor SD, Pyle AM (2008) Crystal structure of a self-spliced group II intron. Science 320:77–82

    Article  ADS  Google Scholar 

  • Tzagoloff A, Akai A, Needleman RB (1975) Assembly of the mitochondrial membrane system. Characterization of nuclear mutants of Saccharomyces cerevisiae with defects in mitochon-drial ATPase and respiratory enzymes. J Biol Chem 250:8228–8235

    Google Scholar 

  • Waldsich C, Pyle AM (2007) A folding control element for tertiary collapse of a group II intron ribozyme. Nat Struct Mol Biol 14:37–44

    Article  Google Scholar 

  • Waldsich C, Pyle AM (2008) A kinetic intermediate that regulates proper folding of a group II intron RNA. J Mol Biol 375:572–580

    Article  Google Scholar 

  • Watkins KP, Kroeger TS, Cooke AM, Williams-Carrier RE, Friso G, Belcher SE, van Wijk KJ, Barkan A (2007) A ribonuclease III domain protein functions in group II intron splicing in maize chloroplasts. Plant Cell 19:2606–2623

    Article  Google Scholar 

  • Weeks KM, Cech TR (1996) Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science 271:345–348

    Article  ADS  Google Scholar 

  • Weghuber J, Dieterich F, Froschauer EM, Svidova S, Schweyen RJ (2006) Mutational analysis of functional domains in Mrs2p, the mitochondrial Mg2+ channel protein of Saccharomyces cere-visiae. FEBS J 273:1198–1209

    Article  Google Scholar 

  • Wiesenberger G, Waldherr M, Schweyen RJ (1992) The nuclear gene MRS2 is essential for the excision of group II introns from yeast mitochondrial transcripts in vivo. J Biol Chem 267:6963–6969

    Google Scholar 

  • Zimmerly S, Moran JV, Perlman PS, Lambowitz AM (1999) Group II intron reverse transcriptase in yeast mitochondria. Stabilization and regulation of reverse transcriptase activity by the intron RNA. J Mol Biol 289:473–490

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Marie Pyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solem, A., Zingler, N., Pyle, A.M., Li- Pook-Than, J. (2009). Group II Introns and Their Protein Collaborators. In: Walter, N.G., Woodson, S.A., Batey, R.T. (eds) Non-Protein Coding RNAs. Springer Series in Biophysics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70840-7_8

Download citation

Publish with us

Policies and ethics