Skip to main content

Attention and Neurodynamical Correlates of Natural Vision

  • Chapter

In the last decade, several lines of evidence have demonstrated that most sensory systems and particularly the visual system are intensely subject to dynami¬cal top-down influences that depend on the current behavior of the organism. During natural vision, eye movements and neuronal activity in many visual areas are dependent on attention and goal-directed actions of the organism. Yet, current models of visual perception are mainly based on studies that have examined neuro-nal activity using very simple stimuli, or restrictive behavioral conditions. Moreover, current receptive field models based on these studies appear to fail when they are tested during experiments that used natural stimuli or complex visual behavior. In this chapter, we discuss new evidence showing that the classical receptive field is an incomplete description of the response of neurons in the visual system, largely because we have overlooked top-down influences in neuronal activity and behavior. We argue that the use of natural stimuli and natural behaviors such as free viewing, by including attention and other top-down mechanisms, can provide new insights into the neurodynamical correlates of visual perception.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aminoff, E., Gronau, N., & Bar, M. (2007b). The parahippocampal cortex mediates spatial and nonspatial associations.CerebralCortex, 17, 1493–1503

    CAS  Google Scholar 

  • Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: Links, causes and implications for spatial attention.Trends in Cognitive Science, 10, 124–130

    Article  Google Scholar 

  • Bar, M. (2004). Visual objects in context.Nature Reviews Neuroscience 5617–629

    Article  PubMed  CAS  Google Scholar 

  • Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M. et al. (2006). Top-down facilitation of visual recognition.Proceedings of the National Academy of Sciences of the United States of America, 103, 449–454

    Article  PubMed  CAS  Google Scholar 

  • Barlow, H. B. (1961). Possible principles underlying the transformations of sensory images. In W. A. Rosenblith (Ed.)Sensory communication(pp. 217–234). Cambridge, MA: MIT

    Google Scholar 

  • Beck, D. M., Rees, G., Frith, C. D., & Lavie, N. (2001). Neural correlates of change detection and change blindness.Nature Neuroscience, 4, 645–650

    Article  PubMed  CAS  Google Scholar 

  • Bringuier, V., Chavane, F., Glaeser, L., & Fregnac, Y. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons.Science, 283, 695–699

    Article  PubMed  CAS  Google Scholar 

  • Carello, C. D. & Krauzlis, R. J. (2004). Manipulating intent: Evidence for a causal role of the superior colliculus in target selection.Neuron, 43, 575–583

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. M., Lakatos, P., Shah, A. S., Mehta, A. D., Givre, S. J., Javitt, D. C. et al. (2007). Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys.Cerebral Cortex, 17, 1561–1569

    Article  PubMed  Google Scholar 

  • Cohen, J. (2002). The grand grand illusion illusion.Journal of Consciousness Studies, 9, 141–157

    Google Scholar 

  • Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems?Proceedings of the National Academy of Sciences of the United States of America, 95, 831–838

    Article  PubMed  CAS  Google Scholar 

  • Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain.Nature Review Neuroscience, 3, 201–215

    Article  CAS  Google Scholar 

  • Dan, Y., Atick, J. J., & Reid, R. C. (1996). Efficient coding of natural scenes in the lateral genicu-late nucleus: Experimental test of a computational theory.Journal of Neuroscience 16, 3351–3362

    PubMed  CAS  Google Scholar 

  • David, S. V., Vinje, W. E., & Gallant, J. L. (2004). Natural stimulus statistics alter the receptive field structure of v1 neurons.Journal of Neuroscience, 24, 6991–7006

    Article  PubMed  CAS  Google Scholar 

  • Epstein, R., Graham, K. S., & Downing, P. E. (2003). Viewpoint-specific scene representations in human parahippocampal cortex.Neuron, 37, 865–876

    Article  PubMed  CAS  Google Scholar 

  • Epstein, R., Harris, A., Stanley, D., & Kanwisher, N. (1999). The parahippocampal place area: Recognition, navigation, or encoding?Neuron, 23, 115–125

    Article  PubMed  CAS  Google Scholar 

  • Epstein, R. & Kanwisher, N. (1998). A cortical representation of the local visual environment.Nature, 392, 598–601

    Article  PubMed  CAS  Google Scholar 

  • Felsen, G. & Dan, Y. (2005). A natural approach to studying vision.Nature Neuroscience 8, 1643–1646

    Article  PubMed  CAS  Google Scholar 

  • Felsen, G., Touryan, J., & Dan, Y. (2005). Contextual modulation of orientation tuning contributes to efficient processing of natural stimuli.Network, 16, 139–149

    Article  PubMed  Google Scholar 

  • Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells.Journal of the Optical Society of America A, 4, 2379–2394

    Article  CAS  Google Scholar 

  • Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention.Science, 291, 1560–1563

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C., Ito, M., Kapadia, M., & Westheimer, G. (2000). Interactions between attention, context and learning in primary visual cortex.Vision Research 40, 1217–1226

    Article  PubMed  CAS  Google Scholar 

  • Hayhoe, M. & Ballard, D. (2005). Eye movements in natural behavior.Trends in Cognitive Science, 9, 188–194

    Article  Google Scholar 

  • Hayhoe, M. M., Shrivastava, A., Mruczek, R., & Pelz, J. B. (2003). Visual memory and motor planning in a natural task.Journal of Vision, 3, 49–63

    Article  PubMed  Google Scholar 

  • Hendry, S. H. & Reid, R. C. (2000). The koniocellular pathway in primate vision.Annual Review in Neuroscience, 23, 127–153

    Article  CAS  Google Scholar 

  • Huettel, S. A., Guzeldere, G., & McCarthy, G. (2001). Dissociating the neural mechanisms of visual attention in change detection using functional MRI.Journal of Cognitive Neuroscience 13, 1006–1018

    Article  PubMed  CAS  Google Scholar 

  • Jones, H. E., Grieve, K. L., Wang, W., & Sillito, A. M. (2001). Surround suppression in primate V1.Journal of Neurophysiology, 86, 2011–2028

    PubMed  CAS  Google Scholar 

  • Kastner, S. & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex.Annual Review in Neuroscience, 23, 315–341

    PubMed  CAS  Google Scholar 

  • Kersten, D. (1987). Predictability and redundancy of natural images.Journal of Optical Society of America A, 4, 2395–2400

    Article  CAS  Google Scholar 

  • Land, M. F. & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities?Vision Research, 41, 3559–3565

    Article  PubMed  CAS  Google Scholar 

  • Land, M. F. & McLeod, P. (2000). From eye movements to actions: How batsmen hit the ball.Nature Neuroscience, 3, 1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Levin, D. T. & Simons, D. J. (1997). Failure to detect changes to attended objects in motion pictures.Psychonomic Bulletin and Review, 4, 501–506

    Google Scholar 

  • Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex.Journal of Neurophysiology 77, 24–42

    PubMed  CAS  Google Scholar 

  • Marcelja, S. (1980). Mathematical description of the responses of simple cortical cells.Journal of Optical Society of America 70, 1297–1300

    Article  CAS  Google Scholar 

  • Moore, T. & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex.Nature, 421, 370–373

    Article  PubMed  CAS  Google Scholar 

  • Moore, T. & Fallah, M. (2001). Control of eye movements and spatial attention. Proceedings of the National Academy of Sciences of the United States of America,98, 1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiol, 70, 909–919

    CAS  Google Scholar 

  • Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience,14, 2178–2189

    PubMed  CAS  Google Scholar 

  • Motter, B. C. (1998). Inside and outside the focus of attention. Neuron,21, 951–953

    Article  PubMed  CAS  Google Scholar 

  • Motter, B. C. & Belky, E. J. (1998). The guidance of eye movements during active visual search. Vision Research,38, 1805–1815

    Article  PubMed  CAS  Google Scholar 

  • Noe, A. (2002). Is the visual world a grand illusion? Journal of Consciousness Studies,9, 1–12

    Google Scholar 

  • O'Regan, J. K., Deubel, H., Clark, J. J., & Rensink, R. A. (2000). Picture changes during blinks: Looking without seeing and seeing without looking. Visual Cognition,7, 191–211

    Article  Google Scholar 

  • Oliva, A. & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnos-ticity changes the perception of complex visual stimuli. Cognitive Psychology,34, 72–107

    Article  PubMed  CAS  Google Scholar 

  • Oliva, A. & Schyns, P. G. (2000). Diagnostic colors mediate scene recognition. Cognitive Psychology,41, 176–210

    Article  PubMed  CAS  Google Scholar 

  • Olshausen, B. A. & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609

    Article  PubMed  CAS  Google Scholar 

  • Olshausen, B. A. & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research,37, 3311–3325

    Article  PubMed  CAS  Google Scholar 

  • Olshausen, B. A. & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology,14, 481–487

    Article  PubMed  CAS  Google Scholar 

  • Olshausen, B. A. & Field, D. J. (2005). How close are we to understanding v1? Neural Computation,17, 1665–1699

    Article  PubMed  Google Scholar 

  • Parraga, C. A., Troscianko, T., & Tolhurst, D. J. (2000). The human visual system is optimised for processing the spatial information in natural visual images. Current Biology,10, 35–38

    Article  PubMed  CAS  Google Scholar 

  • Pelz, J. B. & Canosa, R. (2001). Oculomotor behavior and perceptual strategies in complex tasks. Vision Research, 41, 3587–3596

    Article  PubMed  CAS  Google Scholar 

  • Pessoa, L. & Ungerleider, L. G. (2004). Neural correlates of change detection and change blindness in a working memory task. Cerebral Cortex,14, 511–520

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny, C., Milea, D., & Muri, R. M. (2004). Eye movement control by the cerebral cortex. Current Opinion in Neurology, 17, 17–25

    Article  PubMed  Google Scholar 

  • Rousselet, G. A., Joubert, O. R., & Fabre-Thorpe, M. (2005). How long to get to the “gist” of real-world natural scenes? Visual Cognition,12, 852–877

    Article  Google Scholar 

  • Rust, N. C. & Movshon, J. A. (2005). In praise of artifice. Nature Neuroscience, 8, 1647–1650

    Article  PubMed  CAS  Google Scholar 

  • Shulman, G. L., McAvoy, M. P., Cowan, M. C., Astafiev, S. V., Tansy, A. P., d'Avossa, G. et al. (2003). Quantitative analysis of attention and detection signals during visual search. Journal of Neurophysiology,90, 3384–3397

    Article  PubMed  Google Scholar 

  • Simons, D. J. & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28, 1059–1074

    Article  PubMed  CAS  Google Scholar 

  • Simons, D. J. & Levin, D. T. (1998). Failure to detect changes to people during a real-world interaction. Psychonomic Bulletin and Review,5, 644–649

    Google Scholar 

  • Simons, D. J. & Rensink, R. A. (2005). Change blindness: Past, present, and future. Trends in Cognitive Science, 9, 16–20

    Article  Google Scholar 

  • Smyth, D., Willmore, B., Baker, G. E., Thompson, I. D., & Tolhurst, D. J. (2003). The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. Journal of Neuroscience, 23, 4746–4759

    PubMed  CAS  Google Scholar 

  • Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982). Predictive coding: A fresh view of inhibition in the retina. Proceedings of Royal Society of London – Series B: Biological Science, 216, 427–459

    Article  CAS  Google Scholar 

  • Tehovnik, E. J., Sommer, M. A., Chou, I. H., Slocum, W. M., & Schiller, P. H. (2000). Eye fields in the frontal lobes of primates. Brain Research Brain Research Review,32, 413–448

    Article  CAS  Google Scholar 

  • Theunissen, F. E., David, S. V., Singh, N. C., Hsu, A., Vinje, W. E., & Gallant, J. L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network,12, 289–316

    PubMed  CAS  Google Scholar 

  • Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature,381, 520–522

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst, D. J., Tadmor, Y., & Chao, T. (1992). Amplitude Spectra of Natural Images. Ophthalmic and Physiological Optics,12, 229–232

    Article  PubMed  CAS  Google Scholar 

  • Triesch, J., Ballard, D. H., Hayhoe, M. M., & Sullivan, B. T. (2003). What you see is what you need. Journal of Vision,3, 86–94

    Article  PubMed  Google Scholar 

  • Trotter, Y. & Celebrini, S. (1999). Gaze direction controls response gain in primary visual-cortex neurons. Nature,398, 239–242

    Article  PubMed  CAS  Google Scholar 

  • Turano, K. A., Geruschat, D. R., & Baker, F. H. (2003). Oculomotor strategies for the direction of gaze tested with a real-world activity. Vision Research, 43, 333–346

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G. & Haxby, J. V. (1994). ‘What’ and ‘Where’ in the human brain. Current Opinion in. Neurobiology,4, 157–165

    Article  PubMed  CAS  Google Scholar 

  • Vinje, W. E. & Gallant, J. L. (2000). Sparse coding and decorrelation in primary visual cortex during natural vision. Science,287, 1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Weliky, M., Fiser, J., Hunt, R. H., & Wagner, D. N. (2003). Coding of natural scenes in primary visual cortex. Neuron, 37, 703–718

    Article  PubMed  CAS  Google Scholar 

  • Womelsdorf, T., Fries, P., Mitra, P. P., & Desimone, R. (2006). Gamma-band synchronization in visual cortex predicts speed of change detection. Nature,439, 733–736

    Article  PubMed  CAS  Google Scholar 

  • Worgotter, F., Suder, K., Zhao, Y., Kerscher, N., Eysel, U. T., & Funke, K. (1998). State-dependent receptive-field restructuring in the visual cortex. Nature,396, 165–168

    Article  PubMed  CAS  Google Scholar 

  • Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum

    Google Scholar 

  • Yen, S. C., Baker, J., & Gray, C. M. (2007). Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. Journal of Neurophysiology,97, 1326–1341

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Maldonado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maldonado, P.E., Ossandón, J.P., Flores, F.J. (2009). Attention and Neurodynamical Correlates of Natural Vision. In: Aboitiz, F., Cosmelli, D. (eds) From Attention to Goal-Directed Behavior. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70573-4_4

Download citation

Publish with us

Policies and ethics