Skip to main content
Book cover

Measles pp 13–30Cite as

Measles Virus Receptors

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 329))

Measles virus (MV) has two envelope glycoproteins, the hemagglutinin (H) and fusion protein, which are responsible for attachment and membrane fusion, respectively. Signaling lymphocyte activation molecule (SLAM, also called CD150), a membrane glycoprotein expressed on immune cells, acts as the principal cellular receptor for MV, accounting for its lymphotropism and immunosuppressive nature. MV also infects polarized epithelial cells via an as yet unknown receptor molecule, thereby presumably facilitating transmission via aerosol droplets. Vaccine and laboratory-adapted strains of MV use ubiquitously expressed CD46 as an alternate receptor through amino acid substitutions in the H protein. The crystal structure of the H protein indicates that the putative binding sites for SLAM, CD46, and the epithelial cell receptor are strategically located in different positions of the H protein. Other molecules have also been implicated in MV infection, although their relevance remains to be determined. The identification of MV receptors has advanced our understanding of MV tropism and pathogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres O, Obojes K, Kim KS, tel Meulen V, Schneider-Schaulies J (2003) CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J Gen Virol 84:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Appel MJ (1969) Pathogenesis of canine distemper. Am J Vet Res 30:1167–1182

    PubMed  CAS  Google Scholar 

  • Appel MJG, Jones OR (1967) Use of alveolar macrophages for cultivation of canine distemper virus. Proc Soc Exp Biol Med 126:571–574

    PubMed  CAS  Google Scholar 

  • Appel MJ, Pearce-Kelling S, Summers BA (1992) Dog lymphocyte cultures facilitate the isolation and growth of virulent canine distemper virus. J Vet Diagn Invest 4:258–263

    PubMed  CAS  Google Scholar 

  • Aversa G, Chang C-C, Carballido JM, Cocks BG, de Vries JE (1997) Engagement of the signaling lymphocytic activation molecule (SLAM) on activated T cells results in IL-2-independent,cyclosporin A-sensitive T cell proliferation and IFN-gamma production. J Immunol 158:4036–4044

    PubMed  CAS  Google Scholar 

  • Bankamp B, Hodge G, McChesney MB, Bellini WJ, Rota PA (2008) Genetic changes that affect the virulence of measles virus in a rhesus macaque model. Virology 373:39–50

    Article  PubMed  CAS  Google Scholar 

  • Baron MD (2005) Wild-type Rinderpest virus uses SLAM (CD150) as its receptor. J Gen Virol 86:1753–1757

    Article  PubMed  CAS  Google Scholar 

  • Bartz R, Brinckmann U, Dunster LM, Rima B, ter Meulen V, Schneider-Schaulies J (1996) Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation. Virology 224:334–337

    Article  PubMed  CAS  Google Scholar 

  • Bartz R, Firsching R, Rima B, ter Meulen V, Schneider-Schaulies J (1998) Differential receptor usage by measles virus strains. J Gen Virol 79:1015–1025

    PubMed  CAS  Google Scholar 

  • Bieback K, Lien E, Klagge I, Avota E, Schneider-Schaulies J, Duprex W, Wagner H, Kirschning C, ter Meulen V, Schneider-Schaulies S (2002) Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76:8729–8736

    Article  PubMed  CAS  Google Scholar 

  • Bluming AZ, Ziegler JL (1971) Regression of Burkitt' lymphoma in association with measles infection. Lancet ii:105–106

    Article  Google Scholar 

  • Bouche FB, Ertl OT, Muller CP (2002) Neutralizing B cell response in measles. Viral Immunol 15:451–471

    Article  PubMed  CAS  Google Scholar 

  • Buckland R, Wild TF (1997) Is CD46 the receptor for measles virus? Virus Res 48:1–9

    Article  PubMed  CAS  Google Scholar 

  • Cocks BG, Chang C-CJ, Carballido JM, Yssel H, de Vries JE, Aversa G (1995) A novel receptor involved in T-cell activation. Nature 376:260–263

    Article  PubMed  CAS  Google Scholar 

  • de Swart RL, Ludlow M, de Witte L, Yanagi Y, van Amerongen G, McQuaid S, Yuksel S, Geijtenbeek TB, Duprex WP, Osterhaus AD (2007) Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3:e178

    Article  PubMed  CAS  Google Scholar 

  • de Witte L, Abt M, Schneider-Schaulies S, van Kooyk Y, Geijtenbeek TB (2006) Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80:3477–3486

    Article  PubMed  CAS  Google Scholar 

  • de Witte L, de Vries RD, van der Vlist M, Yüksel S, Litjens M, de Swart RL, Geijtenbeek TBH (2008) DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog 4:e1000049

    Article  PubMed  CAS  Google Scholar 

  • Devaux P, Loveland B, Christiansen D, Milland J, Gerlier D (1996) Interactions between the ecto-domains of haemagglutinin and CD46 as a primary step in measles virus entry. J Gen Virol 77:1477–1481

    Article  PubMed  CAS  Google Scholar 

  • Dörig RE, Marcil A, Chopra A, Richardson CD (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305

    Article  PubMed  Google Scholar 

  • Enders JF, Peebles TC (1954) Propagation in tissue cultures of cytopathic agents from patients with measles. Proc Soc Exp Biol Med 86:277–286

    PubMed  CAS  Google Scholar 

  • Engel Eck MJ, Terhorst C (2003) The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol 3:813–821

    Article  PubMed  CAS  Google Scholar 

  • Erlenhoefer C, Wurzer WJ, Loffler S, Schneider-Schaulies S, ter Meulen V, Schneider-Schaulies J (2001) CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75:4499–4505

    Article  PubMed  CAS  Google Scholar 

  • Erlenhöfer C, Duprex W, Rima B, ter Meulen V, Schneider-Schaulies J (2002) Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol 83:1431–1436

    PubMed  Google Scholar 

  • Farina C, Theil D, Semlinger B, Hohlfeld R, Meinl E (2004) Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. Int Immunol 16:799–809

    Article  PubMed  CAS  Google Scholar 

  • Garcia M, Yu XF, Griffin DE, Moss WJ (2005) In vitro suppression of human immunodeficiency virus type 1 replication by measles virus. J Virol 79:9197–9205

    Article  PubMed  CAS  Google Scholar 

  • Griffin DE (2007) Measles virus. In: DM Knipe, PM Howley, DE Griffin, RA Lamb, MA Martin,B Roizman, SE Straus (eds) Fields virology, 5th edn, Lippincott Williams & Wilkins,Philadelphia, pp 1551–1585

    Google Scholar 

  • Hasegawa K, Hu C, Nakamura T, Marks JD, Russell SJ, Peng KW (2007) Affinity thresholds for membrane fusion triggering by viral glycoproteins. J Virol 81:13149–13157

    Article  PubMed  CAS  Google Scholar 

  • Hashiguchi T, Kajikawa M, Maita N, Takeda M, Kuroki K, Sasaki K, Kohda D, Yanagi Y,Maenaka K (2007) Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Proc Natl Acad Sci U S A 104:19535–19540

    Article  PubMed  Google Scholar 

  • Hashimoto K, Ono N, Tatsuo H, Minagawa H, Takeda M, Takeuchi K, Yanagi Y (2002) SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J Virol 76:6743–6749

    Article  PubMed  CAS  Google Scholar 

  • Hsu E, Iorio C, Sarangi F, Khine A, Richardson C (2001) CDw150 (SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9–21

    Article  PubMed  CAS  Google Scholar 

  • Hsu EC, Sarangi F, Iorio C, Sidhu MS, Udem SA, Dillehay DL, Xu W, Rota PA, Bellini WJ, Richardson CD (1998) A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. J Virol 72:2905–2916

    PubMed  CAS  Google Scholar 

  • Iwata K, Seya T, Yanagi Y, Pesando JM, Johnson PM, Okabe M, Ueda S, Ariga H, Nagasawa S (1995) Diversity of sites for measles virus binding and for inactivation of complement C3b and C4b on membrane cofactor protein CD46. J Biol Chem 270:15148–15152

    Article  PubMed  CAS  Google Scholar 

  • Johnston ICD, ter Meulen V, Schneider-Schaulies J, Schneider-Schaulies S (1999) A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism. J Virol 73:6903–6915

    PubMed  CAS  Google Scholar 

  • Kai C, Ochikubo F, Okita M, Iinuma T, Mikami T, Kobune F, Yamanouchi K (1993) Use of B95a cells for isolation of canine distemper virus from clinical cases. J Vet Med Sci 55:1067–1070

    PubMed  CAS  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  PubMed  CAS  Google Scholar 

  • Kobune F, Sakata H, Sugiura A (1990) Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J Virol 64:700–705

    PubMed  CAS  Google Scholar 

  • Kobune F, Takahashi H, Terao K, Ohkawa T, Ami Y, Suzaki Y, Nagata N, Sakata H, Yamanouchi K, Kai C (1996) Nonhuman primate models of measles. Lab Anim Sci 46:315–320

    PubMed  CAS  Google Scholar 

  • Kouomou DW, Wild TF (2002) Adaptation of wild-type measles virus to tissue culture. J Virol 76:1505–1509

    PubMed  CAS  Google Scholar 

  • Lawrence DM, Patterson CE, Gales TL, D'Orazio JL, Vaughn MM, Rall GF (2000) Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 74:1908–1918

    Article  PubMed  CAS  Google Scholar 

  • Lecouturier V, Fayolle J, Caballero M, Carabana J, Celma ML, Fernandez-Munoz R, Wild TF,Buckland R (1996) Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. J Virol 70:4200–4204

    PubMed  CAS  Google Scholar 

  • Li L, Qi Y (2002) A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for hemadsorption and CD46 binding. Arch Virol 147:775–786

    Article  PubMed  CAS  Google Scholar 

  • Ma CS, Nichols KE, Tangye SG (2007) Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 25:337–379

    Article  PubMed  CAS  Google Scholar 

  • Makhortova NR, Askovich P, Patterson CE, Gechman LA, Gerard NP, Rall GF (2007) Neurokinin-1 enables measles virus trans-synaptic spread in neurons. Virology 362:235–244

    Article  PubMed  CAS  Google Scholar 

  • Manchester M, Valsamakis A, Kaufman R, Liszewski MK, Alvarez J, Atkinson JK, Lublin DM,Oldstone MBA (1995) Measles virus and C3 binding sites are distinct on membrane cofactor protein (CD46). Proc Natl Acad Sci U S A 92:2303–2307

    Article  PubMed  CAS  Google Scholar 

  • Manchester M, Eto DS, Valsamakis A, Liton PB, Fernandez-Munoz R, Rota PA, Bellini WJ,Forthal DN, Oldstone MBA (2000) Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74:3967–3974

    Article  PubMed  CAS  Google Scholar 

  • Massé N, Ainouze M, Neel B, Wild TF, Buckland R, Langedijk JP (2004) Measles virus (MV) hemagglutinin: evidence that attachment sites for MV receptors SLAM and CD46 overlap on the globular head. J Virol 78:9051–9063

    Article  PubMed  CAS  Google Scholar 

  • Massé N, Barrett T, Muller CP, Wild TF, Buckland R (2002) Identification of a second major site for CD46 binding in the hemagglutinin protein from a laboratory strain of measles virus (MV):potential consequences for wild-type MV infection. J Virol 76:13034–13038

    Article  PubMed  CAS  Google Scholar 

  • Mavaddat N, Mason DW, Atkinson PD, Evans EJ, Gilbert RJ, Stuart DI, Fennelly JA, Barclay AN, Davis SJ, Brown MH (2000) Signaling lymphocytic activation molecule (CDw150) is homophilic but self-associates with very low affinity. J Biol Chem 275:28100–28109

    PubMed  CAS  Google Scholar 

  • Minagawa H, Tanaka K, Ono N, Tatsuo H, Yanagi Y (2001) Induction of the measles virus receptor (SLAM) on monocytes. J Gen Virol 82:2913–2917

    PubMed  CAS  Google Scholar 

  • Miyajima N, Takeda M, Tashiro M, Hashimoto K, Yanagi Y, Nagata K, Takeuchi K (2004) Cell tropism of wild-type measles virus is affected by amino acid substitutions in the P, V and M proteins, or by a truncation in the C protein. J Gen Virol 85:3001–3006

    Article  PubMed  CAS  Google Scholar 

  • Moss WJ, Ryon JJ, Monze M, Cutts F, Quinn TC, Griffin DE (2002) Suppression of human immunodeficiency virus replication during acute measles. J Infect Dis 185:1035–1042

    Article  PubMed  Google Scholar 

  • Naniche D, Wild TF, Rabourdin-Combe C, Gerlier D (1992) A monoclonal antibody recognizes a human cell surface glycoprotein involved in measles virus binding. J Gen Virol 73:2617–2624

    Article  PubMed  CAS  Google Scholar 

  • Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032

    PubMed  CAS  Google Scholar 

  • Naniche D, Yeh A, Eto D, Manchester M, Friedman RM, Oldstone MB (2000) Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of alpha/beta interferon production. J Virol 74:7478–7484

    Article  PubMed  CAS  Google Scholar 

  • Navaratnarajah C, Vongpunsawad S, Oezguen N, Stehle T, Braun W, Hashiguchi T, Maenaka K,Yanagi Y, Cattaneo R (2008) Dynamic interaction of the measles virus hemagglutinin with its receptor SLAM. J Biol Chem 283:11763–11771

    Article  PubMed  CAS  Google Scholar 

  • Nielsen L, Blixenkrone-Moller M, Thylstrup M, Hansen NJ, Bolt G (2001) Adaptation of wild-type measles virus to CD46 receptor usage. Arch Virol 146:197–208

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Seki F, Ono N, Yanagi Y (2003) Histidine at position 61 and its adjacent amino acid residues are critical for the ability of SLAM (CD150) to act as a cellular receptor for measles virus. J Gen Virol 84:2381–2388

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Ono N, Seki F, Takeda M, Kura S, Tsuzuki T, Yanagi Y (2007) Measles virus infection of SLAM (CD150) knockin mice reproduces tropism and immunosuppression in human infection. J Virol 81:1650–1659

    Article  PubMed  CAS  Google Scholar 

  • Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y (2001a) Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401

    Article  CAS  Google Scholar 

  • Ono N, Tatsuo H, Tanaka K, Minagawa H, Yanagi Y (2001b) V domain of human SLAM (CDw150) is essential for its function as a measles virus receptor. J Virol 75:1594–1600

    Article  CAS  Google Scholar 

  • Poste G (1971) The growth and cytopathogenicity of virulent and attenuated strains of canine distemper virus in dog and ferret macrophages. J Comp Pathol 81:49–54

    Article  PubMed  CAS  Google Scholar 

  • Rima BK, Earle JAP, Baczko K, ter Meulen V, Liebert UG, Carstens C, Carabana J, Caballero M,Celma ML, Fernandez-Munoz R (1997) Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 78:97–106

    PubMed  CAS  Google Scholar 

  • Santiago C, Bjorling E, Stehle T, Casasnovas JM (2002) Distinct kinetics for binding of the CD46 and SLAM receptors to overlapping sites in the measles virus hemagglutinin protein. J Biol Chem 277:32294–32301

    Article  PubMed  CAS  Google Scholar 

  • Santibanez S, Niewiesk S, Heider A, Schneider-Schaulies J, Berbers GA, Zimmermann A,Halenius A, Wolbert A, Deitemeier I, Tischer A, Hengel H (2005) Probing neutralizing-anti-body responses against emerging measles viruses (MVs): immune selection of MV by H protein-specific antibodies? J Gen Virol 86:365–374

    Article  PubMed  CAS  Google Scholar 

  • Schneider U, von Messling V, Devaux P, Cattaneo R (2002) Efficiency of measles virus entry and dissemination through different receptors. J Virol 76:7460–7467

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Schaulies J, Schnorr J-J, Brinckmann U, Dunster L M, Baczko K, Liebert UG, Schneider-Schaulies S, ter Meulen V (1995) Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc Natl Acad Sci U S A 92:3943–3947

    Article  PubMed  CAS  Google Scholar 

  • Seki F, Ono N, Yamaguchi R, Yanagi Y (2003) Efficient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM (CD150) and their adaptability to marmoset B95a cells. J Virol 77:9943–9950

    Article  PubMed  CAS  Google Scholar 

  • Seki F, Takeda M, Minagawa H, Yanagi Y (2006) The recombinant wild-type measles virus containing a single N481Y substitution in its hemagglutinin cannot use a receptor CD46 as effiiently as that having the hemagglutinin of the Edmonston laboratory strain. J Gen Virol 87:1643–1648

    Article  PubMed  CAS  Google Scholar 

  • Shibahara K, Hotta H, Katayama Y, Homma M (1994) Increased binding activity of measles virus to monkey red blood cells after long-term passage in Vero cell cultures. J Gen Virol 75:3511–3516

    Article  PubMed  CAS  Google Scholar 

  • Shingai M, Ayata M, Ishida H, Matsunaga I, Katayama Y, Seya T, Tatsuo H, Yanagi Y, Ogura H (2003) Receptor use by vesicular stomatitis virus pseudotypes with glycoproteins of defective variants of measles virus isolated from brains of patients with subacute sclerosing panencepha-litis. J Gen Virol 84:2133–2143

    Article  PubMed  CAS  Google Scholar 

  • Sidorenko SP, Clark EA (2003) The dual-function CD150 receptor subfamily: the viral attraction.Nat Immunol 4:19–24

    Article  PubMed  CAS  Google Scholar 

  • Tahara M, Takeda M, Yanagi Y (2005) Contributions of matrix and large protein genes of the measles virus Edmonston strain to growth in cultured cells as revealed by recombinant viruses.J Virol 79:15218–15225

    Article  PubMed  CAS  Google Scholar 

  • Tahara M, Takeda M, Seki F, Hashiguchi T, Yanagi Y (2007a) Multiple amino acid substitutions in hemagglutinin are necessary for wild-type measles virus to acquire the ability to use receptor CD46 efficiently. J Virol 81:2564–2572

    Article  CAS  Google Scholar 

  • Tahara M, Takeda M, Yanagi Y (2007b) Altered interaction of the matrix protein with the cyto-plasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell-cell fusion. J Virol 81:6827–6836

    Article  CAS  Google Scholar 

  • Tahara M, Takeda M, Shirogane Y, Hashiguchi T, Ohno S, Yanagi Y (2008) Measles virus infects both polarized epithelial and immune cells using distinctive receptor-binding sites on its hemagglutinin. J Virol 82:4630–4637

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Tahara M, Hashiguchi T, Sato TA, Jinnouchi F, Ueki S, Ohno S, Yanagi Y (2007) Ahuman lung carcinoma cell line supports efficient measles virus growth and syncytium formation via a SLAM- and CD46-independent mechanism. J Virol 81:12091–12096

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Miyajima N, Kobune F, Tashiro M (2000) Comparative nucleotide sequence analysis of the entire genomes of B95a cell-isolated and Vero cell-isolated measles viruses from the same patient. Virus Genes 20:253–257

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Takeda M, Miyajima N, Kobune F, Tanabayashi K, Tashiro M (2002) Recombinant wild-type and Edmonston strain measles viruses bearing heterologous H proteins: role of H protein in cell fusion and host cell specificity. J Virol 76:4891–4900

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Miyajima N, Nagata N, Takeda M, Tashiro M (2003) Wild-type measles virus induces large syncytium formation in primary human small airway epithelial cells by a SLAM (CD150)-independent mechanism. Virus Res 94:11–16

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Xie M, Yanagi Y (1998) The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Arch Virol 143:213–225

    Article  PubMed  CAS  Google Scholar 

  • Taqi AM, Abdurrahman MB, Yakubu AM, Fleming AF (1981) Regression of Hodgkin's disease after measles. Lancet i:1112

    Article  Google Scholar 

  • Tatsuo H, Okuma K, Tanaka K, Ono N, Minagawa H, Takade A, Matsuura Y, Yanagi Y (2000a) Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins.J Virol 74:4139–4145

    Article  CAS  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000b) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897

    Article  CAS  Google Scholar 

  • Tatsuo H, Ono N, Yanagi Y (2001) Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors. J Virol 75:5842–5850

    Article  PubMed  CAS  Google Scholar 

  • Veillette A (2006) Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol 6:56–66

    Article  PubMed  CAS  Google Scholar 

  • von Messling, V, Springfeld C, Devaux P, Cattaneo R (2003) A ferret model of canine distemper virus virulence and immunosuppression. J Virol 77:12579–12591

    Article  CAS  Google Scholar 

  • von Messling V, Milosevic D, Cattaneo R (2004) Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc Natl Acad Sci U S A 101:14216–14221

    Article  Google Scholar 

  • von Messling V, Svitek N, Cattaneo R (2006) Receptor (SLAM [CD150]) recognition and the V protein sustain swift lymphocyte-based invasion of mucosal tissue and lymphatic organs by a morbillivirus. J Virol 80:6084–6092

    Article  CAS  Google Scholar 

  • Vongpunsawad S, Oezgun N, Braun W, Cattaneo R (2004) Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 78:302–313

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Satoskar A, Faubion W, Howie D, Okamoto S, Feske S, Gullo C, Clarke K, Sosa MR, Sharpe AH, Terhorst C (2004) The cell surface receptor SLAM controls T cell and macro-phage functions. J Exp Med 199:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Woelk CH, Jin L, Holmes EC, Brown DW (2001) Immune and artificial selection in the haemag-glutinin (H) glycoprotein of measles virus. J Gen Virol 82:2463–2474

    PubMed  CAS  Google Scholar 

  • Xie M-F, Tanaka K, Ono N, Minagawa H, Yanagi Y (1999) Amino acid substitutions at position 481 differently affect the ability of the measles virus hemagglutinin to induce cell fusion in monkey and marmoset cells co-expressing the fusion protein. Arch Virol 144:1689–1699

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yanagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yanagi, Y., Takeda, M., Ohno, S., Hashiguchi, T. (2009). Measles Virus Receptors. In: Griffin, D.E., Oldstone, M.B.A. (eds) Measles. Current Topics in Microbiology and Immunology, vol 329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70523-9_2

Download citation

Publish with us

Policies and ethics