Skip to main content

Monitoring, Prediction and Early Warning

  • Chapter

Abstract

Landslide risk reduction is a societal pressing need in for counties and also areas along coasts, lakes, rivers in relatively flat countries. Engineering measures to stabilize dangerous slopes needs very high cost and not feasible for many cases. Monitoring, Prediction, Early Warning is the most economical landslide risk reduction measure which is applicable for both developed and developing countries. This chapter presents monitoring of triggering factors, slope deformation, other indicators in indoor experiments, field experiments as well as in natural condition. Methodology of prediction and early warning is examined based on these monitoring and topographical, geological and hydrological conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baum, R.L., Godt, J.W., Harp, E.L., McKenna, J.P. & McMullen, S.R. (2005). Early warning of landslides for rail traffic between Seattle and Everett, Washington, U.S.A. Proc. Int. Conf. on Landslide Risk Management, Vancouver, 731–740.

    Google Scholar 

  • Baum, R.L., Savage, W.Z. & Godt, J.W. (2002). TRIGRS – a FORTRAN program for transient rainfall infiltration and grid-based regional slope stability analysis. US Geological Survey Open-File Report 02-0424.

    Google Scholar 

  • Campbell, R.H. (1975). Soil slips, debris flows and rainstorms in the Santa Monica Mountains and vicinity, southern California. US Geological Survey Professional Paper 851.

    Google Scholar 

  • Cascini L. & Versace, P. (1988). Relationship between rainfall and landslide in a gneissic cover. Proc. 5th Int Symp. on Landslides, Lausanne.

    Google Scholar 

  • Chan, R.K.S., Pang, P.L.R. & Pun, W.K. (2003). Recent developments in the Landslip Warning System in Hong Kong. Proc. 14th Southeast Asian Geotechnical Conf.

    Google Scholar 

  • Cole, K. & Davis, G.M. (2002). Landslide warning and emergency planning systems in West Dorset, England. Instability: Planning and Management. London, Thomas Telford.

    Google Scholar 

  • Damiano, E., Olivares, L., Minardo, A., Greco, R., Zeni, L., & Picarelli, L. (2008). Advanced monitoring criteria for precocious alerting of rainfall-induced flowslides. Proc. 10th Int. Symp. on Landslides, Xi’an, China, in press.

    Google Scholar 

  • D’Orsi, R., d’Ávila, C., Ortigão, J.A.R., Dias, A., Moraes, L. & Santos, M.D. (1997). Rio-Watch: The Rio de Janeiro Landslide Watch System. Proc. 2nd Pan-American Symp. on Landslides, Rio de Janeiro, 1: 21–30.

    Google Scholar 

  • Fathani, T.F. & Karnawati, D. (2007). Community-based early warning system at Central Java and East Java Province Indonesia, EWS Project – Final Report.

    Google Scholar 

  • Finlay, P.G., Fell. R. & Maguire, P.K. (1997). The relationship between the probability of landslide occurrence and rainfall. Canadian Geotechnical Journal, 34: 811–824.

    Article  Google Scholar 

  • Flentje, P.N., Chowdhury, R.N., Tobin, P. & Brizga, V. (2005). Towards real-time landslide risk management in an urban area. Proc. Int. Conf. on Landslide Risk Management, Vancouver, 741–751.

    Google Scholar 

  • Fukuoka, M. (1980) Landslides associated with rainfalls. Geotechnical Engineering, 11: 1–29.

    Google Scholar 

  • Gasparini, P., Manfredi. G., & Zschau, J. (2007). Preface. Earthquake Early Warning Systems, Gasparini, P., Manfredi, G. & Zschau, J. eds., Springer, Berlin Heidelberg, V–XI.

    Google Scholar 

  • Glade, T., Crozier, M. & Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical Antecedent Daily Rainfall Model. Pure and Applied Geophysics, 157(6–8): 1059–1079.

    Article  Google Scholar 

  • Guzzetti, F., Peruccacci, S., Rossi, M. & Stark, C.P. (2008). The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 1(5): 3–18.

    Google Scholar 

  • Hong, Y., Hiura, H., Shiona, K., Sassa, K., & Fukuoka, H. (2004). Quantitative assessment on the influence of heavy rainfall on the crystalline schist landslide by monitoring system – Case study on Zentoku landslide, Japan. Landslides 2(1): 31–41.

    Article  Google Scholar 

  • Ishido, T. & Mizutani, H. (1981). Experimental and theoretical basis of electrokinetic phenomena to rock-water systems and its applications to geophysics, Journal of Geophysical Research 86: 1763–1775.

    Article  Google Scholar 

  • Jakob, M. & Weatherly, H. (2003). A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology (54): 137–156.

    Article  Google Scholar 

  • Karnawati, D. & Fathani, T.F. (2008). Mechanism of earthquake induced landslides in Yogyakarta Province Indonesia, The Yogyakarta Earthquake, Star Publishing, California, 8-1–8-8.

    Google Scholar 

  • Keefer, D.K., Wilson, R.C., Mark, R.K., Brabb, E.E., Brown, III W.M., Ellen, S.D., Harp, E.L., Wieczorek, G.F., Alger, C.S. & Zatkin, R.S. (1987). Real-time landslide warning during heavy rainfall. Science, 238: 921–926.

    Google Scholar 

  • Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Sdao, F. & Rizzo, E., (2005). Case history: 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine (southern Italy), Geophysics, 70: B11–B18.

    Google Scholar 

  • Mandolini, A. & Urciuoli, G. (1999). Previsione dell’evoluzione cinematica dei pendii mediante un procedimento di simulazione statistica. Rivista Italiana di Geotecnica, 33(1): 37–44.

    Google Scholar 

  • Mills, K.A. (2002). Oregon’s debris flow warning system. Geological Society of America Abstracts with Programs, 34(5).

    Google Scholar 

  • Mitchue, M. (1985). A method for predicting slope failures on cliff and mountain due to heavy rain. Natural Disaster Science, 7(1): 1–12.

    Google Scholar 

  • Ochiai, H., Okada, Y., Furuya, G., Okura, Y., Matsui, T., Sammori, T., Terajima, T. & Sassa, K. (2004). A fluidized landslid on a natural slope by artificial rainfall. Landslides, 3: 211–219.

    Article  Google Scholar 

  • Okada, K. (2004). Influence of rainfalls in prior to the earthquake. In: Sassa, K. Landslide disasters triggered by the 2004 Mid-Niigata Prefecture earthquake in Japan. Landslides 2(2): 135–142.

    Google Scholar 

  • Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S., Rizzo, E., & Sdao, F., (2004). High resolution electrical imaging of the Varco d7Izzo earthflow (southern Italy). Journal of Applied Geophysics, 56: 17–29.

    Article  Google Scholar 

  • Picarelli, L., Urciuoli, G. & Russo, C. (2004). The role of groundwater regime on behaviour of clayey slopes. Canadian Geotechnical Journal, 41: 467–484.

    Article  Google Scholar 

  • Picarelli, L., Versace, P., de Riso, R. & Palmieri, M. (2008). Landslide disaster management in Italy. Proc. 2007 Int. Forum on Landslide Disaster Management, Hong Kong, in press.

    Google Scholar 

  • Picarelli, L., Versace, P., Olivares, L. & Damiano, E. (2007). Prediction of rainfall induced landslides in unsaturated granular soils for early waning setting up. Proc. 2007 Int. Forum on Landslide Disaster Management, Hong Kong.

    Google Scholar 

  • Rizzo, E., Suski, B., & Revil, A., (2004). Self-potential signals associated with pumping tests experiments, Journal of Geophysical Research, 109: B10203, doi:10.1029/2004JB003049.

    Google Scholar 

  • Rokhmana, C.A. (2007). The low cost monitoring system for landslide and volcano with digital photogrammetry, Proc. Joint Convention HAGI-IAGI-IATMI, Bali.

    Google Scholar 

  • Saito, M. (1965). Forecasting the time of occurrence of slope failure. Proc. 6th Int. Conf. on Soil Mechanics and Foundation Engineering. Montreal, 2: 537–542.

    Google Scholar 

  • Sasai, Y., (2008). Volcano-ElectroMagnetics in Japan: The 1986 Eruption of Izu-Oshima and the 2000 Caldera Formation of Miyake-jima Volcano, Electromagnetics in Seismic and Volcanic Area edited by Hattori and Telesca, Yubunsha Pub., 69–86.

    Google Scholar 

  • Sassa, K., Fukuoka, H., Wang, G., Ishikawa, N. (2004). Undrained dynamic-loading ring-shear apparatus and application for landslide dynamics. Landslides 1(1): 7–19.

    Article  Google Scholar 

  • Senfaute, G., Merrien-Soukatchoff, V. & Morel, J. (2003). Microseismic monitoring applied to prediction of chalk cliffs collapses and contribution of numerical modelling. Proc. Int. Conf. on Fast Slope Movements. Prediction and Prevention for Rik Mitigation, L. Picarelli ed., Napoli, 1: 463–468.

    Google Scholar 

  • Sirangelo, B. & Versace, P. (1992). Modelli stocastici di precipitazione e soglie pluviometriche di innesco dei movimenti franosi. Proc. XXIII Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Florence, D361–D373.

    Google Scholar 

  • Versace, P., Capparelli, G. & Picarelli, L. (2007). Landslide investigations and risk mitigation. The Sarno case. Proc. 2007 Int. Forum on Landslide Disaster Management, Hong Kong.

    Google Scholar 

  • Versace, P., Sirangelo. B., & Capparelli, G. (2003). Forewarning model of landslides triggered by rainfall. Proc. 3rd Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Davos.

    Google Scholar 

  • Versace, P., Sirangelo, B. & Chirico, G.B. (1998). Analisi idrologica dell’innesco pluviometrico dell’evento di Sarno del 5 maggio 1998. C.N.R.-G.N.D.C.I., Publication n. 1925, Rome.

    Google Scholar 

  • Wilson, R.C. & Wieczorek, G.F. (1995). Rainfall thresholds for the initiation of debris flows at La Honda, California. Environmental and Engineering Geoscience, 1(1): 11–27.

    Google Scholar 

  • Zlotnicki, J. & Nisida, Y. (2003). Review of morphological insights of self-potential anomalies on volcano, Surveys in Geophysics., 24: 291–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sassa, K., Picarelli, L., Yueping, Y. (2009). Monitoring, Prediction and Early Warning. In: Sassa, K., Canuti, P. (eds) Landslides – Disaster Risk Reduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69970-5_20

Download citation

Publish with us

Policies and ethics