Skip to main content

Dosimetric Considerations for Stereotactic Body Radiotherapy Delivery in the Lung

  • Chapter
  • 1085 Accesses

Abstract

In the performance of stereotactic body radiotherapy (SBRT), one must take into consideration not only the biology of the cancer being treated, but the physics and dosimetry behind delivery of the radiation dose. In a sense, investigation of the clinical application has begun before the basic research has been performed. Investigation of the biology of large-fraction radiotherapy has only started, but due to its potential for significant toxicity, extremely stringent conditions must be applied after due consideration. Here we examine some of the issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blomgren H, Lax I, Naslund I. Radiosurgery for tumors in the body. International Journal of Radiation Oncology Biology Physics 1997;39:328–328.

    Article  Google Scholar 

  2. Blomgren H, Lax I, Naslund I, et al. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncologica 1995;34:861–870.

    PubMed  CAS  Google Scholar 

  3. Lax I, Blomgren H, Naslund I, et al. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncologica 1994;33:677–683.

    PubMed  CAS  Google Scholar 

  4. Papiez L, Timmerman R, DesRosiers C, et al. Extracranial Stereotactic Radioablation: Physical Principles. Acta Oncologica 2003;42:882–894.

    Article  PubMed  Google Scholar 

  5. Timmerman R, Papiez L, Suntharalingam M. Extracranial stereotactic radiation delivery: Expansion of technology beyond the brain. Technology in Cancer Research & Treatment 2003;2:153–160.

    Google Scholar 

  6. Timmerman R, Papiez L, McGarry R, et al. Extracranial stereotactic radioablation — Results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 2003;124:1946–1955.

    Article  PubMed  Google Scholar 

  7. vantRiet A, Mak ACA, Moerland MA, et al. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate. International Journal of Radiation Oncology Biology Physics 1997;37:731–736.

    Article  CAS  Google Scholar 

  8. Knoos T, Kristensen I, Nilsson P. Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. International Journal of Radiation Oncology, Biology, Physics 1998;42:1169–1176.

    Article  PubMed  CAS  Google Scholar 

  9. Graham MV, Matthews JW, Harms WB, et al. 3-Dimensional Radiation Treatment Planning Study for Patients with Carcinoma of the Lung. International Journal of Radiation Oncology Biology Physics 1994;29:1105–1117.

    CAS  Google Scholar 

  10. Graham MV, Purdy JA, Emami B, et al. Clinical dosevolume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). International Journal of Radiation Oncology Biology Physics 1999;45:323–329.

    Article  CAS  Google Scholar 

  11. Lax I. Target Dose Versus Extratarget Dose in Stereotaxic Radiosurgery. Acta Oncologica 1993;32:453–457.

    PubMed  CAS  Google Scholar 

  12. Uematsu M, Shioda A, Tahara K, et al. Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients — A preliminary experience. Cancer 1998;82:1062–1070.

    Article  PubMed  CAS  Google Scholar 

  13. Wulf J, Hadinger U, Oppitz U, et al. Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiotherapy & Oncology 2000;57:225–236.

    Article  CAS  Google Scholar 

  14. Wulf J, Hadinger U, Oppitz U, et al. Stereotactic radiotherapy of targets in the lung and liver. Strahlentherapie Und Onkologie 2001;177:645–655.

    Article  PubMed  CAS  Google Scholar 

  15. Nagata Y, Negoro Y, Aoki T, et al. Clinical outcomes of 3D conformal hypofractionated single high-dose radiotherapy for one or two lung tumors using a stereotactic body frame. International Journal of Radiation Oncology Biology Physics 2002;52:1041–1046.

    Article  Google Scholar 

  16. Papiez L, Moskvin V, Timmerman R. Dose allocation function as a tool for evaluation of SBRT treatments. Medical Physics 2004;31:1824–1824.

    Google Scholar 

  17. Hadinger U, Thiele W, Wulf J. Extracranial stereotactic radiotherapy: evaluation of PTV coverage and dose conformity. Zeitschrift fur Medizinische Physik 2002;12:221–229.

    PubMed  Google Scholar 

  18. Giraud P, Antoine M, Larrouy A, et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. [comment]. International Journal of Radiation Oncology, Biology, Physics 2000;48:1015–1024.

    Article  PubMed  CAS  Google Scholar 

  19. Herfarth KK, Debus J, Lohr F, et al. Extracranial stereotactic radiation therapy: Set-up accuracy of patients treated for liver metastases. International Journal of Radiation Oncology Biology Physics 2000;46:329–335.

    Article  CAS  Google Scholar 

  20. Harada T, Shirato H, Ogura S, et al. Real-time tumortracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer 2002;95:1720–1727.

    Article  PubMed  Google Scholar 

  21. Papiez L, Langer M. On probabilistically defined margins in radiation therapy. Physics in Medicine & Biology 2006;51:3921–3939.

    Article  Google Scholar 

  22. Papiez L, Lu XY, Langer M. On the isotropic distribution of beam directions. Mathematical Models & Methods in Applied Sciences 2000;10:991–1000.

    Article  Google Scholar 

  23. Papiez L. On the equivalence of rotational and concentric therapy. Physics in Medicine & Biology 2000;45:399–409.

    Article  CAS  Google Scholar 

  24. Papiez L, Ringor M. Implications of a reconstruction formula for rotational therapy in treatment planning optimization. Inverse Problems 1997;13:1519–1532.

    Article  Google Scholar 

  25. Nagata Y, Negoro Y, Mizowaki T, et al. Clinical outcome of 3D conformal radiotherapy for solitary lung cancer using a stereotactic body frame. Radiology 2000;217:140–141.

    Google Scholar 

  26. Webb S. The problem of isotropically orienting N converging vectors in space with application to radiotherapy planning. Physics in Medicine & Biology 1995;40:945–954.

    Article  CAS  Google Scholar 

  27. Butson MJ, Elferink R, Cheung T, et al. Verification of lung dose in an anthropomorphic phantom calculated by the collapsed cone convolution method. Physics in Medicine and Biology 2000;45:N143–N149.

    Article  PubMed  CAS  Google Scholar 

  28. Engelsman M, Damen EMF, Koken PW, et al. Impact of simple tissue inhomogeneity correction algorithms on conformal radiotherapy of lung tumours. Radiotherapy and Oncology 2001;60:299–309.

    Article  PubMed  CAS  Google Scholar 

  29. Saitoh H, Fujisaki T, Sakai R, et al. Dose distribution of narrow beam irradiation for small lung tumor. International Journal of Radiation Oncology Biology Physics 2002;53:1380–1387.

    Article  Google Scholar 

  30. Ahnesjo A. Collapsed Cone Convolution of Radiant Energy for Photon Dose Calculation in Heterogeneous Media. Medical Physics 1989;16:577–592.

    Article  PubMed  CAS  Google Scholar 

  31. Butts JR, Foster AE. Comparison of commercially available three-dimensional treatment planning algorithms for monitor unit calculations in the presence of heterogeneities. Journal of Applied Clinical Medical Physics 2001;2:32–41.

    Article  PubMed  CAS  Google Scholar 

  32. McGarry RC, Papiez L, Williams M, et al. Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: Phase I study. International Journal of Radiation Oncology Biology Physics 2005;63:1010–1015.

    Article  Google Scholar 

  33. Timmerman R, McGarry R, Papiez L, et al. Initial report of a prospective phase II trial of stereotactic body radiation therapy for patients with medically inoperable stage I non-small cell lung cancer. International Journal of Radiation Oncology Biology Physics 2005;63:S99–S99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Papiez, L. (2007). Dosimetric Considerations for Stereotactic Body Radiotherapy Delivery in the Lung. In: Urschel, H.C., Kresl, J.J., Luketich, J.D., Papiez, L., Timmerman, R.D., Schulz, R.A. (eds) Treating Tumors that Move with Respiration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69886-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69886-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69885-2

  • Online ISBN: 978-3-540-69886-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics