Skip to main content

Anatomy and Physiology of the Breast

  • Chapter
Book cover Management of Breast Diseases

Abstract

This chapter is a review of the development, structure and function of the normal human breast. It is meant to serve as a backdrop and reference for the chapters that follow on pathologies and treatment. It presents an overview of normal gross anatomy, histology, and hormonal regulation of the breast followed by a discussion of its structural and functional changes from embryonic development through postmenopausal involution. This section includes recent data on some of the hormones, receptors, growth factors, transcription factors and genes that regulate this amazing nutritive organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Romer AS (1970) The vertebrate body., 4th edn. WB Saunders, Philadelphia

    Google Scholar 

  2. Swaminathan N. Strange but true: males can lactate. ScientificAmerican.com. 2007

    Google Scholar 

  3. Wuringer E et al (1998) Nerve and vessel supplying ligamentous suspension of the mammary gland. Plast Reconstr Surg. 101(6):1486–93

    CAS  PubMed  Google Scholar 

  4. Stranding S (ed). Gray’s anatomy: the anatomical basis of clinical practice. 39th ed. Edinburgh: Elsevier, Churchill, Livingstone; 2005. p. 7

    Google Scholar 

  5. Moore KL. Clinically oriented anatomy. 5th ed. Baltimore: Lipincott Williams and Wilkins; 2006

    Google Scholar 

  6. Sarhadi NS, Shaw-Dunn J, Soutar DS (1997) Nerve supply of the breast with special reference to the nipple and areola: Sir Astley Cooper revisited. Clin Anat. 10(4):283–8

    CAS  PubMed  Google Scholar 

  7. Schlenz I et al (2000) The sensitivity of the nipple-areola complex: an anatomic study. Plast Reconstr Surg. 105(3):905–9

    CAS  PubMed  Google Scholar 

  8. Jaspars JJ et al (1997) The cutaneous innervation of the female breast and nipple-areola complex: implications for surgery. Br J Plast Surg. 50(4):249–59

    CAS  PubMed  Google Scholar 

  9. Schlenz I, et al Alteration of nipple and areola sensitivity by reduction mammaplasty: a prospective comparison of five techniques. Plast Reconstr Surg. 2005;115(3):743–51; discussion 752–4

    CAS  PubMed  Google Scholar 

  10. Wakerley JB. Milk ejection and its control. In: Neill JD, editor. Knobil and Neill’s physiology. San Diego: Elsevier; 2006. p. 3129–3190

    Google Scholar 

  11. DelVecchyo C et al (2004) Evaluation of breast sensibility using dermatomal somatosensory evoked potentials. Plast Reconstr Surg. 113(7):1975–83

    PubMed  Google Scholar 

  12. Godwin Y et al (2004) Investigation into the possible cause of subjective decreased sensory perception in the nippleareola complex of women with macromastia. Plast Reconstr Surg. 113(6):1598–606

    PubMed  Google Scholar 

  13. Bloom W, Don Fawcett W. A textbook of histology. 10th ed. Philadelphia: WB Saunders; 1975

    Google Scholar 

  14. Franke-Radowiecka A, Wasowicz K (2002) Adrenergic and cholinergic innervation of the mammary gland in the pig. Anat Histol Embryol. 31(1):3–7

    CAS  PubMed  Google Scholar 

  15. Papay FA et al (1997) Complex regional pain syndrome of the breast in a patient after breast reduction. Ann Plast Surg. 39(4):347–52

    CAS  PubMed  Google Scholar 

  16. Eriksson M et al (1996) Distribution and origin of peptide-containing nerve fibres in the rat and human mammary gland. Neuroscience. 70(1):227–45

    CAS  PubMed  Google Scholar 

  17. Ricbourg B (1992) Applied anatomy of the breast: blood supply and innervation. Ann Chir Plast Esthet. 37(6):603–20

    CAS  PubMed  Google Scholar 

  18. Naccarato AG et al (2003) Definition of the microvascular pattern of the normal human adult mammary gland. J Anat. 203(6):599–603

    PubMed  Google Scholar 

  19. Weinstein SP, et al Hormonal variations in the vascularity of breast tissue. J Ultrasound Med. 2005;24(1):67–72; quiz 74

    PubMed  Google Scholar 

  20. O’Rahilly M. Carpenter and Swenson, vessels, lymphatic drainage and the breast. 2004

    Google Scholar 

  21. Nathanson SD et al (2001) Pathways of lymphatic drainage from the breast. Ann Surg Oncol. 8(10):837–43

    CAS  PubMed  Google Scholar 

  22. Braithwaite LR (1923) The flow of lymph from the ileocaecal angel, and its possible bearing on the cause of duodenal and gastric ulcer. Br J Surg. 11:7–26

    Google Scholar 

  23. Krag D et al (1998) The sentinel node in breast cancer—a multicenter validation study. N Engl J Med. 339(14):941–6

    CAS  PubMed  Google Scholar 

  24. Estourgie SH et al (2004) Lymphatic drainage patterns from the breast. Ann Surg. 239(2):232–7

    PubMed  Google Scholar 

  25. Vendrell-Torne E, Setoain-Quinquer J, Domenech-Torne FM (1971) Study of normal mammary lymphatic drainage using radioactive isotopes. J Nuclear Med. 13(11):801–5

    Google Scholar 

  26. Suami H et al (2008) The lymphatic anatomy of the breast and its implications for sentinel lymph node biopsy: a human cadaver study. Ann Surg Oncol. 15(3):863–71

    PubMed  Google Scholar 

  27. Krynyckyi BR, Shim J, Kim CK. Internal mammary chain drainage of breast cancer. Ann Surg. 2004;240(3):557; author reply 558

    PubMed  Google Scholar 

  28. Kellokumpu-Lehtinen P, Johansson RM, Pelliniemi LJ (1987) Ultrastructure of human fetal mammary gland. Anat Rec. 218(1):66–72

    CAS  PubMed  Google Scholar 

  29. Herman-Giddens ME et al (1997) Secondary sexual characteristics and menses in young girls seen in office practice: a study from the pediatric research in office settings network. Pediatrics. 99(4):505–12

    CAS  PubMed  Google Scholar 

  30. Tanner J (1962) Growth at adolescence., 2nd edn, Blackwell Scientific, Oxford

    Google Scholar 

  31. Tavassoli FA (1999) Pathology of the breast., 2nd edn. Appleton and Lange, Stamford, CT

    Google Scholar 

  32. Hussain Z et al (1999) Estimation of breast volume and its variation during the menstrual cycle using MRI and stereology. Br J Radiol. 72(855):236–45

    CAS  PubMed  Google Scholar 

  33. Howard BA, Gusterson BA (2000) Human breast development. J Mammary Gland Biol Neoplasia. 5(2):119–37

    CAS  PubMed  Google Scholar 

  34. Nelson CM, Bissell MJ (2005) Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol. 15(5):342–52

    PubMed  Google Scholar 

  35. Rosen PR. Rosen’s breast pathoogy. 2nd ed. Philadelphia, PA: Lippincott williams and Wilkins; 2001

    Google Scholar 

  36. Pitelka DR (1988) The mammary gland. In: Weiss L ed) Cell and tissue biology: a textbook of histology. Elsevier Biomedical, New York, pp 880–98

    Google Scholar 

  37. Pathology, U.o.V.D.O.I. Gross Anatomy and Histology. 1998-2007 [cited; Available from: www.med-ed.virginia. edu/courses/path/gyn/breast1.cfm

    Google Scholar 

  38. Cardiff RD (1998) Are the TDLU of the human the same as the LA of mice? J Mammary Gland Biol Neoplasia. 3(1):3–5

    CAS  PubMed  Google Scholar 

  39. Moffat DF, Going JJ (1996) Three-dimensional anatomy of complete duct systems in human breast: pathological and developmental implications. J Clin Pathol. 49(1):48–52

    CAS  PubMed  Google Scholar 

  40. Ohtake T et al (2001) Computer-assisted complete three-dimensional reconstruction of the mammary ductal/lobular systems: implications of ductal anastomoses for breast-conserving surgery. Cancer. 9(12):2263–72

    Google Scholar 

  41. Junqueira L, Carneiro J. Basic histology text and atlas. 10th ed. New York: Lange Medical Books McGraw-Hill; 2003

    Google Scholar 

  42. Ferguson DJ (1985) Intraepithelial lymphocytes and macrophages in the normal breast. Virchows Arch A Pathol Anat Histopathol. 407(4):369–78

    CAS  PubMed  Google Scholar 

  43. Ross M, Pawlina W. Histology, a text and atlas. 5th ed. Baltimore: Lippincott Williams and Wilkins; 2006

    Google Scholar 

  44. Daniel CW, Strickland P, Friedmann Y (1995) Expression and functional role of E-and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev Biol. 169(2):511–9

    CAS  PubMed  Google Scholar 

  45. Woodward WA et al (2005) On mammary stem cells. J Cell Sci. 118(Pt 16):3585–94

    CAS  PubMed  Google Scholar 

  46. Deugnier MA et al (2002) The importance of being a myoepithelial cell. Breast Cancer Res. 4(6):224–30

    CAS  PubMed  Google Scholar 

  47. Monaghan P, Moss D (1996) Connexin expression and gap junctions in the mammary gland. Cell Biol Int. 20(2):121–5

    CAS  PubMed  Google Scholar 

  48. Glukhova M et al (1995) Adhesion systems in normal breast and in invasive breast carcinoma. Am J Pathol. 146(3): 706–16

    CAS  PubMed  Google Scholar 

  49. Gudjonsson T et al (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci. 115(Pt 1):39–50

    CAS  PubMed  Google Scholar 

  50. Schmeichel KL, Weaver VM, Bissell MJ (1998) Structural cues from the tissue microenvironment are essential determinants of the human mammary epithelial cell phenotype. J Mammary Gland Biol Neoplasia. 3(2):201–13

    CAS  PubMed  Google Scholar 

  51. Radice GL et al (1997) Precocious mammary gland development in P-cadherin-deficient mice. J Cell Biol. 139(4):1025–32

    CAS  PubMed  Google Scholar 

  52. Faraldo MM et al (2005) Myoepithelial cells in the control of mammary development and tumorigenesis: data from genetically modified mice. J Mammary Gland Biol Neoplasia. 10(3):211–9

    PubMed  Google Scholar 

  53. Adriance MC et al (2005) Myoepithelial cells: good fences make good neighbors. Breast Cancer Res. 7(5):190–7

    CAS  PubMed  Google Scholar 

  54. El-Sabban ME, Abi-Mosleh LF, Talhouk RS (2003) Developmental regulation of gap junctions and their role in mammary epithelial cell differentiation. J Mammary Gland Biol Neoplasia. 8(4):463–73

    PubMed  Google Scholar 

  55. Gudjonsson T et al (2005) Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia. 10(3):261–72

    PubMed  Google Scholar 

  56. Lakhani SR, O’Hare MJ (2001) The mammary myoepithelial cell—Cinderella or ugly sister? Breast Cancer Res. 3(1):1–4

    CAS  PubMed  Google Scholar 

  57. Liu S et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66(12):6063–71

    CAS  PubMed  Google Scholar 

  58. Hennighausen L, Robinson GW (2005) Information networks in the mammary gland. Nat Rev Mol Cell Biol. 6(9):715–25

    CAS  PubMed  Google Scholar 

  59. Savarese TM et al (2006) Normal breast stem cells, malignant breast stem cells, and the perinatal origin of breast cancer. Stem Cell Rev. 2(2):103–10

    CAS  PubMed  Google Scholar 

  60. Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev Cancer. 3(11):832–44

    CAS  PubMed  Google Scholar 

  61. Chepko G, Smith GH (1997) Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell. 29(2):239–53

    CAS  PubMed  Google Scholar 

  62. Smith GH, Medina D (1988) A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci. 90(Pt 1):173–83

    PubMed  Google Scholar 

  63. Smith GH, Strickland P, Daniel CW (2002) Putative epithelial stem cell loss corresponds with mammary growth senescence. Cell Tissue Res. 310(3):313–20

    PubMed  Google Scholar 

  64. Daniel CW et al (1968) The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci USA. 61(1):53–60

    CAS  PubMed  Google Scholar 

  65. Kordon EC, Smith GH (1998) An entire functional mammary gland may comprise the progeny from a single cell. Development. 125(10):1921–30

    CAS  PubMed  Google Scholar 

  66. Shackleton M et al (2006) Generation of a functional mammary gland from a single stem cell. Nature. 439(7072):84–8

    CAS  PubMed  Google Scholar 

  67. Stingl J et al (1998) Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation. 63(4):201–13

    CAS  PubMed  Google Scholar 

  68. Villadsen R et al (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 177(1):87–101

    CAS  PubMed  Google Scholar 

  69. Welm BE et al (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 245(1):42–56

    CAS  PubMed  Google Scholar 

  70. Clarke RB (2005) Isolation and characterization of human mammary stem cells. Cell Prolif. 38(6):375–86

    CAS  PubMed  Google Scholar 

  71. Matulka LA, Triplett AA, Wagner KU (2007) Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol. 303(1):29–44

    CAS  PubMed  Google Scholar 

  72. Russo J et al (2006) The concept of stem cell in the mammary gland and its implication in morphogenesis, cancer and prevention. Front Biosci. 11:151–72

    CAS  PubMed  Google Scholar 

  73. Stingl J et al (2005) Epithelial progenitors in the normal human mammary gland. J Mammary Gland Biol Neoplasia. 10(1):49–59

    PubMed  Google Scholar 

  74. Wagner KU, Smith GH (2005) Pregnancy and stem cell behavior. J Mammary Gland Biol Neoplasia. 10(1):25–36

    PubMed  Google Scholar 

  75. Dontu G et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17(10):1253–70

    CAS  PubMed  Google Scholar 

  76. Liu S, Dontu G, Wicha MS (2005) Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 7(3):86–95

    CAS  PubMed  Google Scholar 

  77. Guelstein VI et al (1993) Myoepithelial and basement membrane antigens in benign and malignant human breast tumors. Int J Cancer. 53(2):269–77

    CAS  PubMed  Google Scholar 

  78. Prince JM et al (2002) Cell-matrix interactions during development and apoptosis of the mouse mammary gland in vivo. Dev Dyn. 223(4):497–516

    CAS  PubMed  Google Scholar 

  79. Woodward TL et al (2001) Fibronectin and the alpha(5) beta(1) integrin are under developmenal and ovarian steroid regulation in the normal mouse mammary gland. Endicrinology. 142(7):3214–22

    CAS  Google Scholar 

  80. Streuli CH, Bissell MJ (1990) Expression of extracellular matrix components is regulated by substratum. J Cell Biol. 110(4):1405–15

    CAS  PubMed  Google Scholar 

  81. Pullan S et al (1996) Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J Cell Sci. 109(Pt 3):631–42

    CAS  PubMed  Google Scholar 

  82. Streuli C (1999) Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol. 11(5):634–40

    CAS  PubMed  Google Scholar 

  83. Novaro V, Roskelley CD, Bissell MJ (2003) Collagen-IV and laminin-1 regulate estrogen receptor alpha expression and function in mouse mammary epithelial cells. J Cell Sci. 116(Pt 14):2975–86

    CAS  PubMed  Google Scholar 

  84. Weir ML et al (2006) Dystroglycan loss disrupts polarity and beta-casein induction in mammary epithelial cells by perturbing laminin anchoring. J Cell Sci. 119(Pt 19):4047–58

    CAS  PubMed  Google Scholar 

  85. Streuli CH et al (1995) Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol. 129(3):591–603

    CAS  PubMed  Google Scholar 

  86. Farrelly N et al (1999) Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J Cell Biol. 144(6):1337–48

    CAS  PubMed  Google Scholar 

  87. Pujuguet P et al (2000) Nidogen-1 regulates laminin-1-dependent mammary-specific gene expression. J Cell Sci. 113(Pt 5):849–58

    CAS  PubMed  Google Scholar 

  88. Streuli CH, Edwards GM (1998) Control of normal mammary epithelial phenotype by integrins. J Mammary Gland Biol Neoplasia. 3(2):151–63

    CAS  PubMed  Google Scholar 

  89. Li N et al (2005) Betal integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. Embo J. 24(11):1942–53

    CAS  PubMed  Google Scholar 

  90. Klinowska TC et al (1989) Laminin and betal integrins are crucial for normal mammary gland development in the mouse. Dev Biol. 215(1):13–32

    Google Scholar 

  91. Barcellos-Hoff MH et al (1989) Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 105(2):223–35

    CAS  PubMed  Google Scholar 

  92. Blatchford DR et al (1999) Influence of microenvironment on mammary epithelial cell survival in primary culture. J Cell Physiol. 18(2):304–11

    Google Scholar 

  93. Neville MC (2006) Lactation and its hormonal control. In: Neill JD (ed.) Knobil and Neill’s Physiology of Reproduction. San Diego: Elsevier. p. 2993–3054

    Google Scholar 

  94. Eyden BP et al (1986) Intralobular stromal fibroblasts in the resting human mammary gland: ultrastructural properties and intercellular relationships. J Submicrosc Cytol. 18(2):397–408

    CAS  PubMed  Google Scholar 

  95. Atherton AJ et al (1992) Dipeptidyl peptidase IV expression identifies a functional sub-population of breast fibroblasts. Int J Cancer. 50(1):15–9

    CAS  PubMed  Google Scholar 

  96. Sadlonova A et al (2005) Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro coculture. Breast Cancer Res. 7(1):R46–59

    PubMed  Google Scholar 

  97. Parmar H, Cunha GR (2004) Epithelial-stromal interactions in the mouse and human mammary gland in vivo. Endocr Relat Cancer. 11(3):437–58

    CAS  PubMed  Google Scholar 

  98. Boyd NF et al (2006) Mammographic density: a homonally responsive risk factor for breast cancer. J Br Menopause Soc. 12(4):186–93

    PubMed  Google Scholar 

  99. Gouon-Evans V, Lin EY, Pollard JW (2002) Requirement of macrophages and eosonophils and their cytokines/chemokines for mammary gand development. Breast Cancer Res. 4(4):155–64

    PubMed  Google Scholar 

  100. Schwertfeger KL, Rosen JM, Cohen DA (2006) Mammary gland macrophages: pleiotropic functions in mammary development. J Mammary Gland Biol Neoplasia. 11(3–4):229–38

    PubMed  Google Scholar 

  101. Monke J et al (2002) Do inflammatory cells participate in mammary gland involution? J Mammary Gland Biol Neoplasia. 7(2):163–76

    Google Scholar 

  102. Sternlicht MD (2006) Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res. 8(1):201

    PubMed  Google Scholar 

  103. Nishimura T (2003) Expression of potential lymphocyte trafficking mediator molecules in the mammary gland. Vet Res. 34(1):3–10

    CAS  PubMed  Google Scholar 

  104. Dabiri S et al (2004) The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol. 17(6):690–5

    PubMed  Google Scholar 

  105. Hartveit F (1993) Mast cell association with collagen fibres in human breast stroma. Eur J Morphol 31(3)209–18

    CAS  PubMed  Google Scholar 

  106. Popescu LM, Andrei F, Hinescu ME (2005) Snapshots of mammary gland interstitial cells: mythelene-blue vital staining and c-kit immunopositivity. J Cell Mol Med. 9(2):476–7

    CAS  PubMed  Google Scholar 

  107. Popescu LM et al (2005) The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J Cell Mol Med. 9(3):714–30

    CAS  PubMed  Google Scholar 

  108. Radu E et al (2005) Cajal-type cells from human mammary gland stroma: phenotype characteristics in cell culture. J Cell Mol Med. 9(3):748–52

    CAS  PubMed  Google Scholar 

  109. Gherghiceanu M, Popescu LM (2005) Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med. 9(4):893–910

    PubMed  Google Scholar 

  110. Haslam SZ, Woodward TL (2003) Host microenvironment in breast cancer development: epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res. 5(4):208–15

    CAS  PubMed  Google Scholar 

  111. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell. 110(6):673–87

    CAS  PubMed  Google Scholar 

  112. Schatzmann F, Mardow R, Streuli CH (2003) Integrin signaling and mammary cell function. J Mammary Gland Biol Neoplasia. 8(4):395–408

    PubMed  Google Scholar 

  113. Alowami S et al (2003) Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res. 5(5):R129–35

    CAS  PubMed  Google Scholar 

  114. Delehedde M et al (2001) Proteoglycans: pericellular and cell surface multireceptors that integrate external stimuli in the mammary gland. J Mammary Gland Biol Neoplasia. 6(3):253–73

    CAS  PubMed  Google Scholar 

  115. Silverman AJ, Livne I, Witkin JW (1994) The gonadotropin-releasing hormone (GnRH), neuronal systems: immunocytochemistry and in situ hybridization. In: Knobil E, Neill JD (eds) The Physiology of Reproduction. Raven, New York, pp. 1683–709

    Google Scholar 

  116. Arthur Guyton C, John Hall E. Textbook of medical physiology. 11th ed. Elsevier Saunders. p. 1018

    Google Scholar 

  117. Seagroves TN et al (2003) HIF1alpha is a critical regulator of secretory differentiation and activation, but not vascular expansion, in the mouse mammary gland. Development, 130(8):1713–24

    CAS  PubMed  Google Scholar 

  118. Speirs V et al (2002) Distinct expression patterns of ER alpha and ER beta in normal human mammary gland. J Clin Pathol. 55(5):371–4

    CAS  PubMed  Google Scholar 

  119. Levin ER (2005) Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 19(8)):1951–9

    CAS  PubMed  Google Scholar 

  120. Li X et al (2004) Single-chain estrogen receptors (ERs) reveal that the ERalpha/beta heterodimer emulates functions of the ERalpha dimer in genomic estrogen signaling pathways. Mol Cell Biol. 24(17):7681–94

    CAS  PubMed  Google Scholar 

  121. Clarke RB et al (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 57(22):4987–91

    CAS  PubMed  Google Scholar 

  122. Howell A (2006) Pure oestrogen antagonists for the treatment of advanced breast cancer. Endocr Relat Cancer 13(3):689–706

    CAS  PubMed  Google Scholar 

  123. Hall JM, McDonnell DP (1999) The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology. 140(12):5566–78

    CAS  PubMed  Google Scholar 

  124. Asselin-Labat ML et al (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst. 98(14):1011–4

    CAS  PubMed  Google Scholar 

  125. Asselin-Labat ML et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differetiation. Nat Cell Biol. 9(2):201–9

    CAS  PubMed  Google Scholar 

  126. Sleeman KE et al (2007) Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol. 176(1):19–26

    CAS  PubMed  Google Scholar 

  127. Clarke RB (2006) Ovarian steroids and the human breast: regulation of stem cells and cell proliferation. Maturitas. 54(4):327–34

    CAS  PubMed  Google Scholar 

  128. Cheng G et al (2004) Estrogen receptors ER alpha and ER beta in proliferation in the rodent mammary gland. Proc Natl Acad Sci USA. 101(11):3739–46

    CAS  PubMed  Google Scholar 

  129. Khan SA, Bhandare D, Chatterton RT Jr (2005) The local hormonal environment and related biomarkers in the normal breast. Endocr Relat Cancer. 12(3):497–510

    CAS  PubMed  Google Scholar 

  130. Mallepell S et al (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA. 103(7):2196–201

    CAS  PubMed  Google Scholar 

  131. Forster C et al (2002) Involvement of estrogen receptor beta in terminal differentiation of mammary gland epithelium. Proc Natl Acad Sci USA. 99(24):15578–83

    CAS  PubMed  Google Scholar 

  132. Seagroves TN, Rosen JM. Control of mammary epithelial cell proliferation: the unique role of the progesterone receptor. In: Burnstein K, editor. Sex hormones and cell cycle regulation. Kluwer; 2002. p. 33–55

    Google Scholar 

  133. Conneely OM, Jericevic BM, Lydon JP (2003) Progesterone receptors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia. 8(2):205–14

    PubMed  Google Scholar 

  134. Leonhardt SA, Boonyaratanakornkit V, Edwards DP (2003) Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids. 68(10–13):761–70

    CAS  PubMed  Google Scholar 

  135. Aupperlee MD, Haslam SZ (2007) Differential hormonal regulation and function of progesterone receptor isoforms in normal adult mouse mammary gland. Endocrinology. 148(5):2290–300

    CAS  PubMed  Google Scholar 

  136. Lydon JP, Sivaraman L, Conneely OM (2000) A reappraisal of progesterone action in the mammary gland. J Mammary Gland Biol Neoplasia. 5(3):325–38

    CAS  PubMed  Google Scholar 

  137. Cunha GR et al (1997) Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J Mammary Gland Biol Neoplasia. 2(4):393–402

    CAS  PubMed  Google Scholar 

  138. Brisken C, Rajaram RD (2006) Alveolar and lactogenic differentiation. J Mammary Gland Biol Neoplasia. 11(3–4):239–48

    PubMed  Google Scholar 

  139. Yang Y et al (1995) Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J Cell Biol. 131(1):215–26

    CAS  PubMed  Google Scholar 

  140. Kariagina A, Aupperlee MD, Haslam SZ (2007) Progesterone receptor isoforms and proliferation in the rat mammary gland during development. Endocrinology. 148(6):2723–36

    CAS  PubMed  Google Scholar 

  141. Eigeliene N, Harkonen P, Erkkola R (2006) Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures. BMC Cancer. 6:246

    PubMed  Google Scholar 

  142. Freeman ME et al (2000) Profactin: structure, function and regulation of secretion. Physiol Rev. 80(4):1523–631

    CAS  PubMed  Google Scholar 

  143. Horseman ND (1999) Prolactin and mammary gland development. J Mammary Gland Biol Neoplasia. 4(1):79–88

    CAS  PubMed  Google Scholar 

  144. Dong J. Tsai-Morris CH, Dufau ML (2006) A novel estradiol/estrogen receptor alpha-dependent transcriptional mechanism controls expression of the human prolactin receptor. J Biol Chem. 281(27):18825–36

    CAS  PubMed  Google Scholar 

  145. Honda K et al (2004) Prolactin releasing peptides modulate background firing rate and milk-ejection related burst of oxytocin cells in the supraoptic nucleus. Brain Res Bull. 63:315–9

    CAS  PubMed  Google Scholar 

  146. Bussolati G et al (1996) Immunolocalization and gene expression of oxytocin receptors in carcinomas and non-neoplastic tissues of the breast. Am J Pathol. 148(6):1895–903

    CAS  PubMed  Google Scholar 

  147. Reversi A, Cassoni P, Chini B (2005) Oxytocin receptor signaling in myoepithelial and cancer cells. J Mammary Gland Biol Neoplasia. 10(3):221–9

    PubMed  Google Scholar 

  148. Kleinberg DL, Feldman M, Ruan W (2000) IGF-I: an essentical factor in terminal end bud formation and duc tal morphogenesis. J Mammary Gland Biol Neoplasia. 5(1):7–17

    CAS  PubMed  Google Scholar 

  149. Labrie F (2006) Dehydroepiandrosterone, androgens and the mammary gland. Gynecol Endocrinol. 22(3):118–30

    CAS  PubMed  Google Scholar 

  150. Wilson CL et al (2006) Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocr Relat Cancer. 13(2):617–28

    CAS  PubMed  Google Scholar 

  151. Woodward TL, Xie JW, Haslam SZ (1998) The role of mammary stroma in modulating the proliferative response to ovarian hormones in the normal mammary gland. J Mammary Gland Biol Neoplasia. 3(2):117–31

    CAS  PubMed  Google Scholar 

  152. Lamarca HL, Rosen JM (2007) Estrogen regulation of mammary gland development and breast cancer: amphiregulin takes center stage. Breast Cancer Res. 9(4):304

    PubMed  Google Scholar 

  153. Zhang HZ et al (2002) Estrogen mediates mammary epithelial cell proliferation in serum-free culture indirectly via mammary stroma-derived hepatocyte growth factor. Endocrinology. 143(9):3427–34

    CAS  PubMed  Google Scholar 

  154. Soriano JV et al (1998) Roles of hepatocyte growth factor/scatter factor and transforming growth factor-beta1 in mammary glan ductal morphogenesis. J Mammary Gland Biol Neoplasia. 3(2):133–50

    CAS  PubMed  Google Scholar 

  155. Pollard JW (2001) Tumour-stromal interactions. Transforming growth factor-beta isoforms and hepatocyte growth factor/scatter factor in mammary gland ductal morphogenesis. Breast Cancer Res. 3(4):230–7

    CAS  PubMed  Google Scholar 

  156. Kamalati T et al (1999) HGF/SF in mammary epithelial growth and morphogenesis: in vitro and in vivo models. J Mammary Gland Biol Neoplasia. 4(1):69–77

    CAS  PubMed  Google Scholar 

  157. Britten CD (2004) Targeting ErbB receptor signaling: a pan-ErbB approach to cancer. Mol Cancer Ther. 3(10):1335–42

    CAS  PubMed  Google Scholar 

  158. Wiesen JF et al (1999) Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development. 126(2):335–44

    CAS  PubMed  Google Scholar 

  159. Osin PP et al (1998) Breast development gives insights into breast disease. Histopathology. 33(3):275–83

    CAS  PubMed  Google Scholar 

  160. Normanno N, Ciardiello F (1997) EGF-related peptides in the pathophysiology of the mammary gland. J Mammary Gland Biol Neoplasia. 2(2):143–51

    CAS  PubMed  Google Scholar 

  161. Ruan W, Kleinberg DL (1999) Insulin-like growth factor 1 is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology. 140(11):5075–81

    CAS  PubMed  Google Scholar 

  162. Wood TL, Yee D (2000) Introduction: IGFs and IGFBPs in the normal mammary gland and in breast cancer. J Mammary Gland Biol Neoplasia. 5(1):1–5

    CAS  PubMed  Google Scholar 

  163. Ahmad T et al (2004) The mitogenic action of insulin-like growth factor I in normal human mammary epithelial cells requires the epidermal growth factor receptor tyrosine kinase. J Biol Chem. 279(3):1713–9

    CAS  PubMed  Google Scholar 

  164. Wang W et al (2008) Glucocorticoid induced expression of connective tissue growth factor contributes to lactogenic differentiation of mouse mammary epithelial cells. J Cell Physiol. 214(1):38–46

    CAS  PubMed  Google Scholar 

  165. Jiang WG et al (2004) Differential expression of the CCN family members Cyr61. CTGF and Nov in human breast cancer. Endocr Relat Cancer. 11(4):781–91

    CAS  PubMed  Google Scholar 

  166. Anbazhagan R, Gusterson BA (1994) Prenatal factors may influence predisposition to breast cancer. Eur J Cancer. 30A(1):1–3

    CAS  PubMed  Google Scholar 

  167. Hilakivi-Clarke L, de Assis S (2006) Fetal origins of breast cancer. Trends Endocrinol Metab. 17(9):340–8

    CAS  PubMed  Google Scholar 

  168. Trichopoulos D, Lagiou P, Adami HO (2005) Towards an integrated model for breast cancer etiology: the crucial role of the number of mammary tissue-specific stem cells. Breast Cancer Res. 7(1):13–7

    PubMed  Google Scholar 

  169. Hens JR, Wysolmerski JJ (2005) Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res. 7(5):220–4

    CAS  PubMed  Google Scholar 

  170. Jolicoeur F (2005) Intrauterine breast development and the mammary myoepithelial lineage. J Mammary Gland Biol Neoplasia. 10(3):199–210

    PubMed  Google Scholar 

  171. Arey L (1974) Developmental anatomy: a textbook and laboratory manual of embryology. Revised 7th ed. WB Saunders, Philadelphia

    Google Scholar 

  172. Russo J, Russo IH (1999) Mammary gland development In: Knobil E, Neill JD, (eds) Encyclopedia of reproduction San Diego: Academic Press.

    Google Scholar 

  173. Sadler TW (2003) Langman’s medical embryolgy., 9th edn. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  174. Robinson GW, Karpf AB, Kratochwil K (1999) Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia. 4(1):9–19.

    CAS  PubMed  Google Scholar 

  175. Anbazhagan R et al (1998) The development of epithelial phenotypes in the human fetal and infant breast. J Pathol. 184(2):197–206

    CAS  PubMed  Google Scholar 

  176. Hovey RC, Trott JF, Vonderhaar BK (2002) Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 7(1):17–38

    PubMed  Google Scholar 

  177. Tobon H, Slazar H (1974) Ultrastructure of the human mammary gland. I. Development of the fetal gland throughout gestation. J Clin Endocrinol Metab. 39(3):443–56

    CAS  PubMed  Google Scholar 

  178. Kratochwil K, Schwartz P (1976) Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue for testosterone. Proc Natl Acad Sci USA. 73(11):4041–4

    CAS  PubMed  Google Scholar 

  179. Turner CW (1930) The anatomy of the mammary gland in cattle. II. Fetal development. Missouri Agric Exp Sta Res Bull. 160:5–39

    Google Scholar 

  180. Bocchinfuso WP et al (2000) Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology. 141(8):2982–94

    CAS  PubMed  Google Scholar 

  181. Aubert MJ, Grumbach MM, Kaplan SL (1975) The ontogenesis of human fetal hormones. III. Prolactin. J Clin Invest. 56(1):155–64

    CAS  PubMed  Google Scholar 

  182. Keeling JW et al (2000) Oestrogen receptor alpha in female fetal. infant, and child mammary tissue. J Pathol. 191(4):449–51

    CAS  PubMed  Google Scholar 

  183. Naccarato AG et al (2000) Bio-morphological events in the development of the human female mammary gland from fetal age to puberty. Virchows Arch. 436(5):431–8

    CAS  PubMed  Google Scholar 

  184. Nathan B, Anbazhagan R, Clarkson P, Bartkova J (1994) Expression of BCL-2 in thedeveloping human fetal and infant breast. Histopathology. 24:73–6

    CAS  PubMed  Google Scholar 

  185. Magdinier F et al (1999) BRCA1 expression during prenatal development of the human mammary gland. Oncogene. 18(27):4039–43

    CAS  PubMed  Google Scholar 

  186. Casey TM et al (2007) Mammary epithelial cells treated concurrently with TGF-alpha and TGF-beta exhibit enhanced proliferation and death. Exp Biol Med (Maywood). 232(8):1027–40

    CAS  Google Scholar 

  187. Stull MA et al (2004) Growth factor regulation of cell cycle progression in mammary epithelial cells. J Mammary Gland Biol Neoplasia. 9(1):15–26

    PubMed  Google Scholar 

  188. Streuli CH et al (1993) Extracellular matrix regulates expression of the TGF-beta 1 gene. J Cell Biol. 120(1):253–60

    CAS  PubMed  Google Scholar 

  189. Chammas R et al (1994) Laminin and tenascin assembly and expression regulate HC11 mouse mammary cell differentiation. J Cell Sci. 107(Pt 4):1031–40

    CAS  PubMed  Google Scholar 

  190. Dunbar ME, Wysolmerski JJ. The role of parathyroid hormone-related protein (PTHrP) in mammary development, lactation, and breast cancer. 1996 [cited; Available from: http://mammary.nih.gov/reviews/development/Wyso1001/slides/introduction.html

    Google Scholar 

  191. McKiernan J, Coyne J, Cahalane S (1988) Histology of breast development in early life. Arch Dis Child. 63(2):136–9

    CAS  PubMed  Google Scholar 

  192. McKiernan JF, Hull D (1981) Breast development in the newborn. Arch Dis Childhood. 56:525–9

    CAS  Google Scholar 

  193. Russo J, Russo IH (1994) Toward a physiological approach to breast cancer prevention. Cancer Epidemiol Biomark Prev. 3(4):353–64

    CAS  Google Scholar 

  194. Russo J, Russ IH (1987) Development of the human mammary gland. In: Neville MD, Daniel C (eds) The mammary gland: development, regulation and function. Plenum, New York

    Google Scholar 

  195. McKiernan JF, Hull D (1981) Prolactin, maternal oestrogens, and breast development in the newborn. Arch Dis Child. 56(10):770–4

    CAS  PubMed  Google Scholar 

  196. Schmidt IM et al (2002) Gender difference in breast tissue size in infancy: correlation with serum estradiol. Pediatr Res. 52(5):682–6

    CAS  PubMed  Google Scholar 

  197. Pierce DF Jr et al (1993) Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev. 7(12A):2308–17

    CAS  PubMed  Google Scholar 

  198. Russo I, Medado J, Russo J (1989) Endocrine influences on the mammary gland. In: Jones T, Mohr U, Hunt E (eds) Integument and mammary glands. Springer, Berlin

    Google Scholar 

  199. Humphreys RC (1999) Programmed cell death in the terminal end bud. J Mammary Gland Biol Neoplasia. 4(2):213–20

    CAS  PubMed  Google Scholar 

  200. Humphreys RC et al (1996) Apoptosis in the terminal end bud of the murine mammary gland: a mechanism of ductal morphogenesis. Development. 122(12):4013–22

    CAS  PubMed  Google Scholar 

  201. Britt K, Ashworth A, Smalley M (2007) Pregnancy and the risk of breast cancer. Endocr Relat Cancer. 14(4):907–33

    CAS  PubMed  Google Scholar 

  202. Williams JM, Daniel CW (1983) Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol. 97(2):274–90

    CAS  PubMed  Google Scholar 

  203. Topper YJ, Freeman CS (1980) Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev. 60(4):1049–106

    CAS  PubMed  Google Scholar 

  204. Anderson E, Clarke RB, Howell A (1998) Estrogen responsiveness and control of normal human breast proliferation. J Mammary Gland Biol Neoplasia. 3(1):23–35

    CAS  PubMed  Google Scholar 

  205. Laurence DJ, Monaghan P, Gusterson BA (1991) The development of the normal human breast. Oxf Rev Reprod Biol. 13:149–74

    CAS  PubMed  Google Scholar 

  206. Russo J et al (2001) Cancer risk related to mammary gland structure and development. Microsc Res Tech. 52(2):204–23

    CAS  PubMed  Google Scholar 

  207. Feldman M et al (1993) Evidence that the growth hormone receptor mediates differentiation and development of the mammary gland. Endocrinology. 133(4):1602–8

    CAS  PubMed  Google Scholar 

  208. Marshman E, Streuli CH (2002) Insulin-like growth factors and insulin-like growth factor binding proteins in mammary gland function. Breast Cancer Res. 4(6):231–9

    CAS  PubMed  Google Scholar 

  209. Howlin J, McBryan J, Martin F (2006) Pubertal mammary gland development: insights from mouse models. J Mammary Gland Biol Neoplasia. 11(3–4):283–97

    PubMed  Google Scholar 

  210. Going JJ et al (1988) Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. Am J Pathol. 130(1):193–204

    CAS  PubMed  Google Scholar 

  211. Ramakrishnan R, Khan SA, Badve S (2002) Morphological changes in breast tissue with menstrual cycle. Mod Pathol. 15(12):1348–56

    PubMed  Google Scholar 

  212. Navarrete MA et al (2005) Assessment of the proliferative, apoptotic and cellular renovation indices of the human mammary epithelium during the follicular and luteal phases of the menstrual cycle. Breast Cancer Res. 7(3):R306–13

    CAS  PubMed  Google Scholar 

  213. Andres AC, Strange R (1999) Apoptosis in the estrous and menstrual cycles. J Mammary Gland Biol Neoplasia. 4(2):221–8

    CAS  PubMed  Google Scholar 

  214. Fanager H, Ree HJ (1974) Cyclic changes of human mammary gland epithelium in relation to the menstrual cycle-an ultrastructural study. Cancer. 34:574–85

    Google Scholar 

  215. Ferguson JE et al (1992) Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell Tissue Res. 268(1):167–77

    CAS  PubMed  Google Scholar 

  216. McCarty KS Jr et al (1982) Immunoglobulin localization in the normal human mammary gland: variation with the menstrual cycle. Am J Pathol. 107(3):322–6

    PubMed  Google Scholar 

  217. Kass R, Mancino AT, Rosenbloom AL, Klimberg VS, Bland KI (2004) Breast physiology: normal and abnormal development and function. In: Bland KI, Copeland EM III (eds) The breast: comprehensive management of benign and malignant disorders. Saunders, St. Louis, Missouri

    Google Scholar 

  218. Silva JS et al (1983) Menstrual cycle-dependent variations of breast cyst fluid proteins and sex steroid receptors in the normal human breast. Cancer. 51(7):1297–302

    CAS  PubMed  Google Scholar 

  219. Fabris G et al (1987) Pathophysiology of estrogen receptors in mammary tissue by monoclonal antibodies. J Steroid Biochem. 27:171–6

    CAS  PubMed  Google Scholar 

  220. Dabrosin C (2005) Increased extracellular local levels of estradiol in normal breast in vivo during the luteal phase of the menstrual cycle. J Endocrinol. 187(1):103–8

    CAS  PubMed  Google Scholar 

  221. Gompel A et al (1996) Epidermal growth factor receptor and c-erbB-2 expression in normal breast tissue during the menstrual cycle. Breast Cancer Res Treat. 38(2):227–35

    CAS  PubMed  Google Scholar 

  222. Nevalainen MT et al (2002) Basal activation of transcription factor signal transducer and activator of transcription (Stat5) in nonpregnant mouse and human breast epithelium. Mol Endocrinol. 16(5):1108–24

    CAS  PubMed  Google Scholar 

  223. Ham AW (1969) Histology. 6th edn. JB Lippincott, Philadelphia

    Google Scholar 

  224. Russell TD et al (2007) Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. J Lipid Res. 48(7):1463–75

    CAS  PubMed  Google Scholar 

  225. Morroni M et al (2004) Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci USA. 101(48):16801–6

    CAS  PubMed  Google Scholar 

  226. Piliero SJ, Jacobs MS, Wischnitzer S (1965) Atlas of histology. JB Lippincott, Philadelphia

    Google Scholar 

  227. Medina D (2005) Mammary developmental fate and breast cancer risk. Endocr Relat Cancer. 12(3):483–95

    CAS  PubMed  Google Scholar 

  228. Balogh GA et al (2006) Genomic signature induced by pregnancy in the human breast, Int J Oncol. 28(2):399–410

    CAS  PubMed  Google Scholar 

  229. Popnikolov N et al (2001) Reconstituted normal human breast in nude mice: effect of host pregnancy environment and human chorionic gonadotropin on proliferation. J Endocrinol. 168(3):487–96

    CAS  PubMed  Google Scholar 

  230. Numan M (1994) Maternal behavior. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven, New York, pp. 221–302

    Google Scholar 

  231. Eliassen AH, Tworoger SS, Hankinson SE (2007) Reproductive factors and family history of breast cancer in relation to plasma prolactin levels in premenopausal and postmenopausal women. Int J Cancer. 120(7):1536–41

    CAS  PubMed  Google Scholar 

  232. Blakely CM et al (2006) Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by prennancy. Cancer Res. 66(12):6421–31

    CAS  PubMed  Google Scholar 

  233. Russo J et al (2005) Breast differentiation and its implication in cancer prevention. Clin Cancer Res. 11(2 Pt 2): 931s–6s

    CAS  PubMed  Google Scholar 

  234. Russo J et al (2005) The protective role of pregnancy in breast cancer. Breast Cancer Res. 7(3):131–42

    PubMed  Google Scholar 

  235. Jackson D, Bresnick J, Dickson C (1997) A role for fibroblast growth factor signaling in the lobuloalveolar development of the mammary gland. J Mammary Gland Biol Neoplasia. 2(4):385–92

    CAS  PubMed  Google Scholar 

  236. Laud K et al (2001) Expression of BRCA1 gene in ewe mammary epithelial cells during pregnancy: regulation by growth hormone and steroid normones. Eur J Endocrinol. 145(6):763–70

    CAS  PubMed  Google Scholar 

  237. Furuta S et al (2005) Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proc Natl Acad Sci USA. 102(26):9176–81

    CAS  PubMed  Google Scholar 

  238. Burkitt HG, Young B, Heathe JW (1993) Wheater’s functional histology, a text and colour atlas. 3rd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  239. Espinosa LA et al (2005) The lactating breast: contrastenhanced MR imaging of normal tissue and cancer. Radiology. 237(2):429–36

    PubMed  Google Scholar 

  240. Forsyth I. Mammary gland, overview. In: Knobil E, Neill JD, editors. Encyclopedia of reproduction. Academic; 1999 p. 81–88

    Google Scholar 

  241. Neville MC. Milk secretion: an overview. 1998 [cited 07/31/2007]; Available from: http://mammary.nih.gov/ Reviews/lactation/neville001/index.html

    Google Scholar 

  242. Itoh M, Bissell MJ (2003) The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis. J Mammary Gland Biol Neoplasia. 8(4):449–62

    PubMed  Google Scholar 

  243. Young B, Wheater PR (2006) Wheater’s functional histology: a text and colour atlas., 5th edn. Churchill Livingstone Elsevier, Oxford, p. 437

    Google Scholar 

  244. Kolb AF (2002) Engineering immunity in the mammary gland. J Mammary Gland Biol Neoplasia. 7(2):123–34

    PubMed  Google Scholar 

  245. Uauy R, De Andraca I (1995) Human milk and breast feeding for optimal mental development. J Nutr. 125(8 Suppl):2278S–80S

    CAS  PubMed  Google Scholar 

  246. Lawson M (2007) Contemporary aspects of infant feeding. Paediatr Nurs. 19(2):39–46

    PubMed  Google Scholar 

  247. Owen CG et al (2003) Effect of breast feeding in infancy on blood pressure in later life: systematic review and meta-analysis. BMJ. 327(7425):1189–95

    PubMed  Google Scholar 

  248. Martin RM et al (2005) Breast-feeding and cancer: the Boyd Orr cohort and a systematic review with meta-analysis. J Natl Cancer Inst. 97(19):1446–57

    PubMed  Google Scholar 

  249. Frank JW, Newman J (1993) Breast-feeding in a polluted world: uncertain risks, clear benefits. CMAJ. 149(1):33–7

    CAS  PubMed  Google Scholar 

  250. Rudolph MC et al (2007) Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics. 28(3):323–36

    CAS  PubMed  Google Scholar 

  251. Villalpando S, del Prado M (1999) Interrelation among dietary energy and fat intakes, maternal body fatness, and milk total lipid in humans. J Mammary Gland Biol Neoplasia. 4(3):285–95

    CAS  PubMed  Google Scholar 

  252. Neville MC (2005) Calcium secretion into milk. J Mammary Gland Biol Neoplasia. 10(2):119–28

    PubMed  Google Scholar 

  253. Keenan TS, Franke WW, Mather IH, Morre DJ (1978) Endomembrane composition and function in milk formation. In: Larson BL (ed) Lactation. Academic, New York, p 105

    Google Scholar 

  254. Linzell JL, Peaker M (1971) Mechanism of milk secretion. Physiol Rev. 51(3):564–97

    CAS  PubMed  Google Scholar 

  255. Neville MC (1990) The physiological basis of milk secretion. Ann N Y Acad Sci. 586:1–11

    CAS  PubMed  Google Scholar 

  256. Fleishaker JC, McNamara PJ (1988) In vivo evaluation in the lactating rabbit of a model for xenobiotic distribution into breast milk. J Pharmacol Exp Ther. 244(3):919–24

    CAS  PubMed  Google Scholar 

  257. Hunziker W, Kraehenbuhl JP (1998) Epithelial transcytosis of immunoglobulins. J Mammary Gland Biol Neoplasia. 3(3):287–302

    CAS  PubMed  Google Scholar 

  258. Csontos K et al (1979) Elevated plasma beta-endorphin levels in pregnant women and their neonates. Life Sci. 25(10):835–44

    CAS  PubMed  Google Scholar 

  259. Clevenger CV, Plank TL (1997) Prolactin as an autocrine/paracrine factor in breast tissue. J Mammary Gland Biol Neoplasia. 2(1):59–68

    CAS  PubMed  Google Scholar 

  260. Mol JA et al (2000) Progestin-induced mammary growth hormone (GH) production. Adv Exp Med Biol. 480:71–6

    CAS  PubMed  Google Scholar 

  261. McNeilly AS et al (1983) Release of oxytocin and prolactin in response to suckling. Br Med J (Clin Res Ed). 286(6361):257–9

    CAS  Google Scholar 

  262. Martin RH, Oakey RE (1982) The role of antenatal oestrogen in postpartum human lactogenesis: evidence from oestrogen-deficient pregnancies. Clin Endocrinol (Oxford England). 17(4):403–8

    CAS  Google Scholar 

  263. Daly SE et al (1996) Frequency and degree of milk removal and the short-term control of human milk synthesis. Exp Physiol. 81(5):861–75

    CAS  PubMed  Google Scholar 

  264. Hadsell D, George J, Torres D (2007) The declining phase of lactation: peripheral or central, programmed or pathological? J Mammary Gland Biol Neoplasia. 12(1):59–70

    PubMed  Google Scholar 

  265. Itahana Y et al (2007) Regulation of clusterin expression in mammary epithelial cells. Exp Cell Res. 313(5):943–51

    CAS  PubMed  Google Scholar 

  266. Mennella JA, Pepino MY, Teff KL (2005) Acute alcohol consumption disrupts the hormonal milieu of lactating women. J Clin Endocrinol Metab. 90(4):1979–85

    CAS  PubMed  Google Scholar 

  267. Butte NF, Hopkinson JM (1998) Body composition changes during lactation are highly variable among women. J Nutr. 128(2) Suppl:381S–5S

    CAS  PubMed  Google Scholar 

  268. Ganong’s Review of Medical Physiology. 23rd ed. Lange. 2009. p. 452

    Google Scholar 

  269. Dewey KG (1998) Effects of maternal caloric restriction and exercise during lactation. J Nutr. 128(2 Suppl):386S–9S

    CAS  PubMed  Google Scholar 

  270. Wysolmerski J (2005) Calcium handling by the lactating breast and its relationship to calcium-related complications of breast cancer. J Mammary Gland Biol Neoplasia. 10(2):101–3

    PubMed  Google Scholar 

  271. Kovacs CS (2005) Calcium and bone metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia. 10(2):105–18

    PubMed  Google Scholar 

  272. Wilde CJ, Knight CH, Flint DJ (1999) Control of milk secretion and apoptosis during mammary involution. J Mammary Gland Biol Neoplasia. 4(2):129–36

    CAS  PubMed  Google Scholar 

  273. Talhouk RS, Bissell MJ, Werb Z (1992) Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol. 118(5):1271–82

    CAS  PubMed  Google Scholar 

  274. Marti A et al (1999) Transcription factor activities and gene expression during mouse mammary gland involution. J Mammary Gland Biol Neoplasia. 4(2):145–52

    CAS  PubMed  Google Scholar 

  275. Stein T, Salomonis N, Gusterson BA (2007) Mammary gland involution as a multi-step process. J Mammary Gland Biol Neoplasia. 12(1):25–35

    PubMed  Google Scholar 

  276. Jaggi R. Morphological changes during programmed cell death (PCD) in the involuting mouse mammary gland. 1996 [cited; Available from: http://mammary.nih.gov/reviews/development/Jaggi001/index.html

    Google Scholar 

  277. Baxter FO, Neoh K, Tevendale MC (2007) The beginning of the end: death signaling in early involution. J Mammary Gland Biol Neoplasia. 12(1):3–13

    PubMed  Google Scholar 

  278. Thorburn A (2007) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis. 13(1):1–9

    Google Scholar 

  279. Atabai K, Sheppard D, Werb Z (2007) Roles of the innate immune system in mammary gland remodeling during involution. J Mammary Gland Biol Neoplasia. 12(1):37–45

    PubMed  Google Scholar 

  280. Fadok VA (1999) Clearance: the last and often forgotten stage of apoptosis. J Mammary Gland Biol Neoplasia. 4(2):203–11

    CAS  PubMed  Google Scholar 

  281. Watson CJ (2006) Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 8(2):203

    PubMed  Google Scholar 

  282. Streuli CH, Gilmore AP (1999) Adhesion-mediated signaling in the regulation of mammary epithelial cell survival. J Mammary Gland Biol Neoplasia. 4(2):183–91

    CAS  PubMed  Google Scholar 

  283. Martinez-Hernandez A, Fink LM, Pierce GB (1976) Removal of basement membrane in the involuting breast. Lab Invest, 34(5):455–62

    CAS  PubMed  Google Scholar 

  284. Simpson HW et al (2002) Pregnancy postponement and childlessness leads to chronic hypervascularity of the breasts and cancer risk. Br J Cancer. 87(11):1246–52

    CAS  PubMed  Google Scholar 

  285. Flint DJ, Tonner E, Allan GJ (2000) Insulin-like growth factor binding proteins: IGF-dependent and-independent effects in the mammary gland. J Mammary Gland Biol Neoplasia. 5(1):65–73

    CAS  PubMed  Google Scholar 

  286. Lochrie JD et al (2006) Insulin-like growth factor binding protein (IGFBP)-5 is up-regulated during both differentiation and apoptosis in primary cultures of mouse mammary epithelial cells. J Cell Physiol. 207(2):471–9

    CAS  PubMed  Google Scholar 

  287. Watson CJ, Burdon TG (1996) Prolactin signal transduction mechanisms in the mammary gland: the role of the Jak/Stat pathway. Rev Reprod. 1(1):1–5

    CAS  PubMed  Google Scholar 

  288. Hu X et al (2002) Leptin-a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst. 94(22):1704–11

    CAS  PubMed  Google Scholar 

  289. Dontu G et al (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6(6):R605–15

    CAS  PubMed  Google Scholar 

  290. Dontu G, Wicha MS (2005) Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia. 10(1):75–86

    PubMed  Google Scholar 

  291. Rowley M, Grothey E, Couch FJ (2004) The role of Tbx2 and Tbx3 in mammary development and tumorigenesis. J Mammary Gland Biol Neoplasia. 9(2):109–18

    PubMed  Google Scholar 

  292. Kouros-Mehr H et al (2006) GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell. 127(5):1041–55

    CAS  PubMed  Google Scholar 

  293. Lewis MT, Veltmaat JM (2004) Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia. 9(2):165–81

    PubMed  Google Scholar 

  294. Hatsell S, Frost AR (2007) Hedgehog signaling in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia. 12(2–3):163–73

    PubMed  Google Scholar 

  295. Groner B (2002) Transcription factor regulation in mammary epithelial cells. Domest Anim Endocrinol. 23(1–2):25–32

    CAS  PubMed  Google Scholar 

  296. Zhou J et al (2005) Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. Embo J. 24(3):635–44

    CAS  PubMed  Google Scholar 

  297. Puppin C et al (2006) HEX expression and localization in normal mammary gland and breast carcinoma. BMC Cancer. 6:192

    PubMed  Google Scholar 

  298. van Genderen C et al (1994) Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8(22): 2691–703

    PubMed  Google Scholar 

  299. Davenport TG, Jerome-Majewska LA, Papaioannou VE (2003) Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development, 130(10):2263–73

    CAS  PubMed  Google Scholar 

  300. Satokata I et al (2000) Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 24(4):391–5

    CAS  PubMed  Google Scholar 

  301. Dunbar ME et al (1999) Parathyroid hormone-related protein signaling is necessary for sexual dimorphism during embryonic mammary development. Development. 126(16):3485–93

    CAS  PubMed  Google Scholar 

  302. Kim H, Laing M, Muller W (2005) c-Src-null mice exhibit defects in normal mammary gland development and ERalpha signaling. Oncogene. 24(36):5629–36

    CAS  PubMed  Google Scholar 

  303. Lydon JP et al (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 9((18):2266–78

    Google Scholar 

  304. Horseman ND et al (1997) Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. Embo J. 16(23):6926–35

    CAS  PubMed  Google Scholar 

  305. Pollard JW, Hennighausen L (1994) Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci USA. 91(20):9312–6

    CAS  PubMed  Google Scholar 

  306. Fantl V et al (1995) Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 9(19):2364–72

    CAS  PubMed  Google Scholar 

  307. Stinnakre MG et al (1994) Creation and phenotypic analysis of alpha-lactalbumin-deficient mice. Proc Natl Acad Sci USA. 91(14):6544–8

    CAS  PubMed  Google Scholar 

  308. Triplett AA et al (2005) Expression of the whey acidic protein (Wap) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells. Genesis. 43(1):1–11

    CAS  PubMed  Google Scholar 

  309. Wagner KU et al (1997) Oxytocin and milk removal are required for postpartum mammary gland development. Genes Funct. 1(4):233–44

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, M.C. (2010). Anatomy and Physiology of the Breast. In: Jatoi, I., Kaufmann, M. (eds) Management of Breast Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69743-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69743-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69742-8

  • Online ISBN: 978-3-540-69743-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics