Skip to main content

Room Acoustics

  • Chapter
  • First Online:
Handbook of Engineering Acoustics

Abstract

The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely “good acoustics” of a room do not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schroeder MR, Kuttruff H (1962) On frequency response curves in rooms. Comparison of experimental, theoretical and Monte Carlo results for the average frequency spacing between maxima. J Acoust Soc Amer 34:76–80

    Article  ADS  Google Scholar 

  2. Borish S (1985) Extension of the image model to arbitrary polyhedra. J Acoust Soc Amer 75:1827–1836

    Article  ADS  Google Scholar 

  3. Kuttruff H (1971) Simulated reverberation curves in rectangular rooms with diffuse sound fields. Acustica 25:333–342, (1976) Reverberation and effective absorption in rooms with diffuse wall reflections. Acustica 35:141–153 (in German

    Google Scholar 

  4. Carroll MM, Miles RN (1978) Steady-state sound in an enclosure with diffusely reflecting boundary. J Acoust Soc Amer 64:1425–1436

    Article  ADS  Google Scholar 

  5. Korany N, Blauert J, Abdel Alim O (2001) Acoustic simulation of rooms with boundaries of partially specular reflectivity. Appl Acoust 62:875–887

    Article  Google Scholar 

  6. Bass HE, Sutherland LC, Zuckerwar AJ, Blackstock DT, Hester DM (1995) Atmospheric absorption of sound: Further developments. J Acoust Soc Am 97:680–683

    Article  ADS  Google Scholar 

  7. Andres HG (1965/66) Über ein Gesetz die räumlichen Zufallsschwankung von Rauschpegeln in Räumen und seine Anwendung auf Schalleistungsmessungen. Acustica 16:279–294

    Google Scholar 

  8. Waterhouse RV (1955) Interference patterns in reverberant sound fields. J Acoust Soc Amer 27:247–258

    Article  ADS  Google Scholar 

  9. Meyer E, Burgtorf W, Damaske P (1965) Eine Apparatur zur elektroakustischen Nachbildung von Schallfeldern. Acustica 15:339–344

    Google Scholar 

  10. Reichardt W, Schmidt W (1967) The detectability of changes in sound field parameters for music. Acustica 18:274–282 (in German)

    Google Scholar 

  11. Schroeder MR, Gottlob D, Siebrasse KF (1974) Comparative study of European concert halls: Correlation of subjective preference with geometry and acoustic parameters. J Acoust Soc Amer 56:1195–1201

    Article  ADS  Google Scholar 

  12. Gottlob D, Siebrasse F, Schroeder MR (1975) Fortschr. d. Akustik – DAGA ’75, Physik-Verlag, Weinheim

    Google Scholar 

  13. Burgtorf W (1961) Untersuchungen zur Wahrnehmbarkeit verzögerter Schallsignale. Acustica 11:97–111

    Google Scholar 

  14. Seraphim H-P (1961) Über die Wahrnehmbarkeit mehrerer Rückwürfe von Sprachschall. Acustica 11:80–91

    Google Scholar 

  15. Burgtorf W, Oehlschlägel HK (1964) Untersuchungen über die richtungsabhängige Wahrnehmbarkeit verzögerter Schallsignale. Acustica 14:254–266

    Google Scholar 

  16. Schubert P (1969) Die Wahrnehmbarkeit von Rückwürfen bei Musik. Z Hochfrequenztechn u Elektroakust 78:230–245

    Google Scholar 

  17. Cremer L (1948) Die wissenschaftlichen Grundlagen der Raumakustik, Band 1: Geometrische Raumakustik, 1.Aufl., S Hirzel, Stuttgart

    Google Scholar 

  18. Haas H (1951) Über den Einfluß eines Einfachechos auf die Hörsamkeit von Sprache. Acustica 1:49–58

    Google Scholar 

  19. Meyer E, Schodder G R (1952) Über den Einfluß von Schallrückwürfen auf Richtungslokalisation und Lautstärke von Sprache. Nachr. Akad. Wissensch. Göttingen, Math.-Phys. Kl. No. 6: 31–42

    Google Scholar 

  20. Muncey RW, Nickson AFB, Dubout P (1953) The acceptability of speech and music with a single artificial echo. Acustica 3:168–173

    Google Scholar 

  21. Atal BS, Schroeder MR, Kuttruff H (1962) Perception of coloration in filtered Gaussian noise. Short time spectral analysis of the ear. Proc. 4th Intern. Congr. Acoustics, Copenhagen, Paper H 31

    Google Scholar 

  22. Bilsen FA (1967/68) Thresholds of perception pitch. Conclusions concerning coloration in room acoustics and correlation in the hearing organ. Acustica 19:27–31

    Google Scholar 

  23. Thiele R (1953) Richtungsverteilung und Zeitfolge der Schallrückwürfe in Räumen. Acustica 3:291–302

    Google Scholar 

  24. Reichardt W, Abdel Alim O, Schmidt W (1974) Abhängigkeit der Grenzen zwischen brauchbarer und unbrauchbarer Durchsichtigkeit von der Art des Musikmotives, der Nachhallzeit und der Nachhalleinsatzzeit. Appl Acoust 7:243–264

    Article  Google Scholar 

  25. Lochner JPA, Burger JF (1961) Optimum reverberation time for speech rooms based on hearing characteristics. Acustica 11:195–200

    Google Scholar 

  26. Kürer R (1969) Zur Gewinnung von Einzahlkriterien bei Impulsmessungen in der Raumakustik. Acustica 21:370–372

    Google Scholar 

  27. Houtgast T, Steeneken HJM (1973) The modulation transfer function in room acoustics as a predictor of speech intelligibility. Acustica 28:66–73; (1984) A multi-language Evaluation of the RASTI-method for estimation speech intelligibility in auditoria

    Google Scholar 

  28. Schroeder MR (1981) Modulation transfer functions: definition and measurement. Acustica 49:179–182

    MathSciNet  Google Scholar 

  29. Barron M (1974) The effects of early reflections on subjective acoustical quality in concert halls. PhD-Thesis, University of Southampton

    Google Scholar 

  30. Damaske P, Ando Y (1972) Interaural crosscorrelation for multichannel loudspeaker reproduction. Acustica 27:232–238

    Google Scholar 

  31. Morimoto M, Maekawa Z (1989) Auditory spaciousness and envelopment. 13th Intern. Congr. Acoustics, Belgrad, 215–218

    Google Scholar 

  32. Bradley JS, Soulodre GA (1995) Objective measures of listener envelopment. J Acoust Soc Amer 98:2590–2597

    Article  ADS  Google Scholar 

  33. Dietsch L, Kraak W (1986) An objective criterion for the measurement of echo disturbances during presentation of music and speech. Acustica 60:205–216 (in German)

    Google Scholar 

  34. Sabine WC (1922) Collected Papers on acoustics. Harvard University Press, Cambridge

    Google Scholar 

  35. Knudsen VO (1929) The hearing of speech in auditoriums. J Acoust Soc Amer 1:56–82

    Article  ADS  Google Scholar 

  36. Seraphim H-P (1958) Untersuchungen über die Unterschiedsschwelle exponentiellen Abklingens von Rauschbandimpulsen. Acustica 8:280–284

    Google Scholar 

  37. Atal BS, Schroeder MR, Sessler GM (1965) Subjective reverberation time and its relation to sound decay. Proc. 5th Intern. Congr. Acoustics, Liege, Paper G 32

    Google Scholar 

  38. Jordan VL (1970) Acoustical criteria for auditoriums and their relation to model techniques. J Acoust Soc Amer 47:408–412

    Article  ADS  Google Scholar 

  39. Normenausschuß D (1968) Schallabsorptionstabelle. Beuth, Berlin

    Google Scholar 

  40. Harris CM (1994) Noise control in buildings. Mc Graw Hill, New York

    Google Scholar 

  41. Fasold W, Veres E (2003) Schallschutz und Raumakustik in der Praxis: Planungsbeispiele und konstruktive Lösungen, 2nd edn. Beuth, Berlin

    Google Scholar 

  42. Cremer L, Müller HA, Schultz TJ (1982) Principles and applications of room acoustics. Applied Science Publishers, London

    Google Scholar 

  43. Kath U, Kuhl W (1965) Messungen zur Schallabsorption von Polsterstühlen mit und ohne Personen. Acustica 15:127–131

    Google Scholar 

  44. Beranek L, Hidaka T (1998) Sound absorption in concert halls by seats, occupied and unoccupied, and the hall’s interior surfaces. J Acoust Soc Am 104(6):3169–3177

    Article  ADS  Google Scholar 

  45. Vorländer M (1995) International Round Robin on Room Acoustics Computer Simulations, Proc 15th Intern. Congr. Acoustics, Trondheim, 689–692

    Google Scholar 

  46. Bork I (2000) A comparison of room simulation software – the 2nd round robin on room acoustical computer simulation. Acustica/acta acustica: 943–956

    Google Scholar 

  47. Mommertz E, Müller K (1995) Berücksichtigung gekrümmter Wandflächen im raumakustischen Schallteilchenverfahren. Fortschr. d. Akustik – DAGA ‘95, DPG-GmbH, Bad Honnef

    Google Scholar 

  48. Vorländer M, Mommertz E (2000) Definition and measurement of random-incidence scattering coefficient. Appl Acoust 60:187–199

    Article  Google Scholar 

  49. Schroeder M R, Atal B S, Bird C (1962) Digital computers in room acoustics. Proc 4 Intern. Congr. Acoustics, Copenhagen, paper M 21

    Google Scholar 

  50. Krokstad A, Strøm S, Sørsdal S (1968) Calculating the acoustical room response by the use of a ray tracing technique. J Sound Vibr 8:118–124, (1983) Fifteen years experience with computerized ray tracing. Appl Acoust 16: 291–312

    Article  ADS  Google Scholar 

  51. Stephenson U (1985) An acoustic computer simulation technique for calculating parameters relevant to subjective acoustical impression in concert halls. Acustica 59:1–20 (in German)

    Google Scholar 

  52. Vorländer M (1988) A ray-tracing program for the calculation of sound fields in rooms. Acustica 65:138–148 (in German)

    Google Scholar 

  53. Ondet AM, Barbry JL (1988) Modelling of sound propagation in fitted workshops using ray tracing. J Acoust Soc Am 87:787–796

    Google Scholar 

  54. Allen SP, Berkley DA (1979) Image method for efficiently simulating small-room acoustics. J Acoust Soc Amer 65:943–950

    Article  ADS  Google Scholar 

  55. Vian SP, Van Maercke D (1986) Calculation of the room impulse response using a ray-tracing method. Proc. 12th Intern. Congr. Acoustics, Vancouver, 74–78

    Google Scholar 

  56. Vorländer M (1989) Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm. J Acoust Soc Amer 86:172–178

    Article  ADS  Google Scholar 

  57. Mommertz E (1995) Untersuchung akustischer Wandeigenschaften und Modellierung der Schallrückwürfe in der binauralen Raumsimulation. Dissertation RWTH Aachen, Shaker Verlag, Aachen

    Google Scholar 

  58. Heinz R (1993) Binaural spatial simulation using a combined method – separate simulation of the geometrical and the diffuse components. Acustica 79:207–220 (in German)

    Google Scholar 

  59. Naylor GM (1993) Odeon– another hybrid room acoustical model. Appl Acoust 38:131–143

    Article  Google Scholar 

  60. Dalenbäck B-I L (1996) Room acoustic prediction based on a unified treatment of diffuse and specular reflection. J Soc Acoust Am 100:899–909

    Article  ADS  Google Scholar 

  61. Kuttruff, H (2009) Room Acoustics, 5th edn. Taylor & Francis, New York

    Google Scholar 

  62. Lewers T (1993) A combined beam tracing and radient exchange computer model of room acoustics. Appl Acoust 38:161–178

    Article  Google Scholar 

  63. Brebeck P, Bücklein R, Krauth E, Spandöck F (1967) Akustisch ähnliche Modelle als Hilfsmittel für die Raumakustik. Acustica 18:213–226

    Google Scholar 

  64. Tennhardt H-P (1984) A method of measurement with a model, which is used in research on balancing auditions in musical performances, as exemplified in the acoustics of the large hall in the Neue Gewandhaus Leipzig. Acustica 56:126–135 (in German)

    Google Scholar 

  65. Xiang N, Blauert J (1993) Binaural scale modelling for auralization and prediction of acoustics in auditoria. Appl Acoust 38

    Google Scholar 

  66. Martin J, Vian SP (1989) Binaural sound simulation of concert halls by a beam tracing method. Proc. 13th Int. Congr. Acoustics, Belgrad, 253–256

    Google Scholar 

  67. Kuttruff H, Vorländer M, Classen T (1990) On the auditory assessment of the acoustics of simulated halls. Acustica 70:230–231 (in German)

    Google Scholar 

  68. Köring J, Schmitz A (1993) Simplifying cancellation of Cross-talk for playback of head-related recordings in a two-speaker system. Acustica 79:221–232

    Google Scholar 

  69. Kleiner M, Dalenbäck B-I, Svensson P (1993) Auralization – an overview. J Audio Eng Soc 41:861–875

    Google Scholar 

  70. Vorländer M (2007) Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, Springer, Berlin Heidelberg

    Article  Google Scholar 

  71. Meyer E, Kuttruff H, Schulte F (1965) Versuche zur Schallausbreitung über Publikum. Acustica 15:175–182

    Google Scholar 

  72. Schultz TJ, Watters BG (1964) Propagation of sound across audience seating. J Acoust Soc Amer 36:885–902

    Article  ADS  Google Scholar 

  73. Mommertz E (1993) Some measurements of the propagation of acoustic waves skimming over the audience and seats. Acustica 79:42–52 (in German)

    Google Scholar 

  74. Bradley JS, Reich RD, Norcross SG (1999) On the combined effects of signal-to-noise ratio and room acoustics on speech intelligibility. J Acoust Soc Am 106:1820–1828

    Article  ADS  Google Scholar 

  75. Bruckmeyer F (1962) Handbuch der Schalltechnik im Hochbau. Deuticke, Wien

    Google Scholar 

  76. Cremer L, Keidel L, Müller HA (1956) Die akustischen Eigenschaften des großen und des mittleren Saales der neuen Liederhalle in Stuttgart. Acustica 6:466–474

    Google Scholar 

  77. Kuttruff H (1989) Acoustical design of the Chiang Kai Shek Cultural Centre in Taipei. Appl Acoust 27:27–46

    Article  Google Scholar 

  78. Beranek LL (1996) Concert and opera halls: how they sound. Acoustical Society of America, Woodbury

    Google Scholar 

  79. Opitz U (1996): The Athens Concert hall: A multipurpose hall for Concert and Opera events or a new solution ? Acoustical Symposium, Turin

    Google Scholar 

  80. Fasold W (1982) Akustische Maßnahmen im Neuen Gewandhaus Leipzig. Bauforschg., Baupraxis H. 117

    Google Scholar 

  81. Cremer L (1964) Die raum- und bauakustischen Maßnahmen beim Wiederaufbau der Berliner Philharmonie. Schalltechn 24:1–11

    Google Scholar 

  82. Meyer J (2009) Acoustics and the Performance of Music: Manual for Acousticians, Audio Engineers, Musicians, Architects and Musical Instrument Makers, 5th edn. Springer, New York

    Google Scholar 

  83. Marshall AH, Gottlob D, Alrutz H (1978) Acoustical conditions preferred for ensemble. J Acoust Soc Amer 64:1437–1442

    Article  ADS  Google Scholar 

  84. Jordan VL (1969) Room acoustics and architectural acoustics development in recent years. Appl Acoust 2:59–81, (1975) Auditoria acoustics: Development in recent years. Appl Acoust 8: 217–235

    Article  Google Scholar 

  85. Barron M (2009) Auditorium acoustics and architectural design, Spon, London

    Google Scholar 

  86. Reichardt W (1961) Die Akustik des Zuschauerraums der Staatsoper Berlin, Unter den Linden. Z Hochfrequenztech u Elektroakust 70:119

    Google Scholar 

  87. Furrer W, Lauber A (1972) Raum- und Bauakustik. Lärmabwehr, Birkhäuser, Basel, Stuttgart

    Google Scholar 

  88. Cremer L, Nutsch J, Zemke HJ (1962) Die akustischen Maßnahmen beim Wiederaufbau der deutschen Oper Berlin. Acustica 12:428–432

    Google Scholar 

  89. Kraak W (1990) Personal communication

    Google Scholar 

  90. Müller Kh (1998) Raumakustische Gestaltung des Festspielhauses Baden-Baden. Bericht zur 20. Tonmeistertagung, Karlsruhe, 79–88

    Google Scholar 

  91. Jordan VL (1980) Acoustical design of concert halls and theatres. Applied Science Publishers, London

    Google Scholar 

  92. Meyer E, Kuttruff H (1964) Zur Raumakustik einer großen Festhalle. Acustica 14:138–147

    Google Scholar 

  93. Parkin PH, Morgan K (1970) “Assisted Resonance” in the Royal Festival Hall London: 1965–1969. J Acoust Soc Amer 48:1025–1035

    Article  ADS  Google Scholar 

  94. Franssen NV (1968) Sur l’amplification des champs acoustiques. Acustica 20:315–323

    Google Scholar 

  95. Berkhout AJ (1988) A holographic approach to acoustic control. J Audio Eng Soc 36:977–995

    Google Scholar 

  96. Berkhout AJ, de Vries D, Vogel PJ (1993) Acoustic control by wavefield synthesis. J Acoust Soc 93:2764–2778

    Article  ADS  Google Scholar 

  97. Griesinger D (1996) Beyond MLS – Occupied hall measurement with FFT techniques, 101st AES convention, preprint 4403

    Google Scholar 

  98. Kleiner M, Svensson P (1995) Review of active systems in room acoustics and electroacoustics. Proc. Active 95, Newport Beach: 39–54

    Google Scholar 

  99. Lottermoser W (1983) Orgeln, Kirchen und Akustik, Band 2. Bochinsky, Frankfurt am Main

    Google Scholar 

  100. Meyer J (2000) Zur Raumakustik in Johann Sebastian Bachs Kirchen. Bericht zur 21. Tonmeistertagung, Hannover, 1064–1077

    Google Scholar 

  101. Everest F A, Pohlmann K C (2008) Master handbook of acoustics, 5th edn. McGraw Hill, New York

    Google Scholar 

  102. Kuttruff H (1985) Stationary sound propagation in flat enclosures. Acustica 57:62–70 (in German)

    MATH  Google Scholar 

  103. Kurze UJ (1997) Sound propagation in work spaces. In: Encyclopedia of acoustics Vol. III, Malcom J. Crocker (ed), Wiley, New York 1881–1187

    Google Scholar 

  104. ISO 11690–3 (1999) Acoustics – Recommended practice for the design of low-noise workplaces containing machinery – Part 3: Sound propagation and noise prediction in workrooms

    Google Scholar 

  105. Bradley JS (2003) The acoustical design of conventional open plan offices. Canad Acoust 31:23–31

    Google Scholar 

  106. Schroeder MR (1965) New method of measuring reverberation time. J Acoust Soc Amer 37:409–412

    Article  ADS  Google Scholar 

  107. ISO 3382 (1997) Measurement of the reverberation time of rooms with reference to other acoustical parameters

    Google Scholar 

  108. Alrutz H, Schroeder M R (1983) A fast hadamard transform method for the evaluation of measurements using pseudorandom test signals. Proc. 11th Intern. Congr. Acoustics, Paris, Vol. 6, 235–238

    Google Scholar 

  109. Borish J, Angell JB (1983) An efficient algorithm for measuring the impulse response using pseudorandom noise. J Audio Eng Soc 31:478–487

    Google Scholar 

  110. Griesinger D (1995) Design and performance of multichannel time variant reverberation enhancement systems. Proc. Active 95, Newport Beach: 1203–1212

    Google Scholar 

  111. Müller S, Massarani P (2001) Transfer function measurement with sweeps. J Audio Eng Soc 49:443–471

    Google Scholar 

  112. Kleiner M (1989) A new way of measuring the lateral energy fraction. Appl Acoust 27:321–327

    Article  Google Scholar 

  113. Engel G (2011) Acoustic Enhancement Systems for classical concerts, 8th International conference on Auditorium acoustics, Dublin, Proc. of the Institute of Acoustics

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Kuttruff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuttruff, H., Mommertz, E. (2013). Room Acoustics. In: Müller, G., Möser, M. (eds) Handbook of Engineering Acoustics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69460-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69460-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24052-5

  • Online ISBN: 978-3-540-69460-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics