Skip to main content

DC Motor Damping: A Strategy to Increase Passive Stiffness of Haptic Devices

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5024))

Abstract

Physically dissipative damping can increase the range of passive stiffness that can be rendered by a haptic device. Unlike simulated damping it does not introduce noise into the haptic control system. A DC motor can generate such damping if it’s terminals are shorted. We employ a configuration of the H-bridge which can cause this damping to impart stability to our haptic device. This results in an increase in passive wall stiffness of about 33.3% at a sampling rate of 100Hz and 16.6% at 1kHz over the performance of an undamped DC motor. We have also attempted to implement the system on the hybrid haptic control system [1], it was seen that a perceivable change in the performance of this system was not observed by the use of DC motor damping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vasudevan, H., Srikanth, M.B., Manivannan, M.: Rendering stiffer walls: A hybrid haptic system using continuous and discrete time feedback. Advanced Robotics 21(11) (2007)

    Google Scholar 

  2. Colgate, J.E., Brown, J.M.: Factors affecting the z-width of a haptic display. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3205–3210 (1994)

    Google Scholar 

  3. Minsky, M., Ming, O.-Y., Steele, O., Brooks Jr., F.P., Behensky, M.: Feeling and seeing: issues in force display. In: SI3D 1990: Proceedings of the 1990 symposium on Interactive 3D graphics, pp. 235–241. ACM Press, New York (1990)

    Chapter  Google Scholar 

  4. Abbott, Okamura.: Effects of position quantization and sampling rate on virtual-wall passivity. IEEE Transactions on Robotics 21(5) (2005)

    Google Scholar 

  5. Miller, B.E., Colgate, J.E., Freeman, R.A.: Passive implementation for a class of static nonlinear environments in haptic display. In: IEEE International Conference on Robotics and Automation, Detroit, MI, USA, IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  6. Gillespie, Cutkosky: Stable user-specific haptic rendering of the virtual wall. In: ASME Dynamic Systems and Control. vol. 58, pp. 397–406 (1996)

    Google Scholar 

  7. Colgate, J.E., Grafing, P.E., Stanley, M.C., Schenkel, G.: Implementation of stiff virtual walls in force-reflecting interfaces. In: VR, Seattle, Washington, USA, pp. 202–208 (1993)

    Google Scholar 

  8. Miller, Colgate, Freeman: On the role of dissipation in haptic systems. IEEE Transactions on Robotics 20(4) (2004)

    Google Scholar 

  9. Hannaford, B., Ryu, J.H.: Time domain passivity control of haptic interfaces. IEEE Transactions on Robotics and Automation 18(1), 1–10 (2002)

    Article  Google Scholar 

  10. Lee, K., Lee, D.Y.: Multirate control of haptic interface for stability and high fidelity. In: Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, The Hague, Netherlands, October 2004, pp. 2542–2547 (2004)

    Google Scholar 

  11. Diolaiti, Niemeyer, Barbagli, Salisbury.: Stability of haptic rendering: Quantization, discretization, time-delay and coulomb effects. IEEE Transactions on Robotics 22(2), 256–268 (2006)

    Article  Google Scholar 

  12. Kawai, M., Yoshikawa, T.: Haptic display with an interface device capable of continuous-time impedance display within a sampling period. IEEE/ASME TRANSACTIONS ON MECHATRONICS 9 (2004)

    Google Scholar 

  13. Niemeyer, G., Diolaiti, N., Tanner, N.: Wave haptics: Encoderless virtual stiffnesses. In: Proc.International Symposium of Robotics Research, San Francisco, CA, USA (October 2005)

    Google Scholar 

  14. Kwon, T.-B., Song, J.-B.: Force display using a hybrid haptic device composed of motors and brakes. Mechatronics 16(5), 249–257 (2006)

    Article  MathSciNet  Google Scholar 

  15. Mehling, J.S., Colgate, J.E., Peshkin, M.A.: Increasing the impedance range of a haptic display by adding electrical damping. In: Eurohaptics Conference, pp. 257–262 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel Ferre

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srikanth, M.B., Vasudevan, H., Muniyandi, M. (2008). DC Motor Damping: A Strategy to Increase Passive Stiffness of Haptic Devices. In: Ferre, M. (eds) Haptics: Perception, Devices and Scenarios. EuroHaptics 2008. Lecture Notes in Computer Science, vol 5024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69057-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69057-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69056-6

  • Online ISBN: 978-3-540-69057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics