Skip to main content

Optical Fibre Humidity Sensors Using Nano-films

  • Chapter
Sensors

Part of the book series: Lecture Notes Electrical Engineering ((LNEE,volume 21))

Abstract

This chapter attempts to approach the fibre optic humidity sensing technology to scientists unfamiliar with the field. A general review of this type of sensors is presented here with emphasis in the techniques based on nanostructured coatings. These devices have been classified according to the sensing mechanism and taking also into account the different methods of fabrication and the sensing materials they are based on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuhr, P.L.; Huston, D.R., Corrosion detection in reinforced concrete roadways and bridges via embedded fibre optic sensors. In: Smart Mater. Struct., 1998, 7, 217–228.

    Google Scholar 

  2. Cooper, K.R.; Elster, J.; Jones, M.; Kelly, R.G., Optical fibre-based corrosion sensor systems for health monitoring of aging aircraft, In: Autotestcon Proceedings, IEEE Systems Readiness Technology Conference, Aug. 2001, 847–856, 20–23.

    Google Scholar 

  3. Bownass, D.C.; Barton, J.S.; Jones, J.D.C., Detection of high humidity by optical fibre sensing at telecommunications wavelengths, Optics Communications, 15 January 1998, 146 (1), 90–94(5).

    Article  Google Scholar 

  4. Mc Murtry, S.; Wright, J.D.; Jackson, D.A., Sensing applications of a low-coherence fibre-optic interferometer measuring the refractive index of air, Sensors and Actuators B: Chemical, 5 January 2001, 72 (1), 69–74.

    Article  Google Scholar 

  5. Matsumoto, S., New air density and absolute humidity sensors using optical fibre cable and alpha-rays, Meas. Sci. Technol. 2001, 12, 865–870.

    Google Scholar 

  6. McMurtry, S.; Wright, J.D.; Jackson, D. A., A multiplexed low coherence interferometric system for humidity sensing, Sensors and Actuators B, 2000, 67, 52–56.

    Article  Google Scholar 

  7. Brook, T.E.; Narayanaswamy, R., Polymeric films in optical gas sensors, Sensors and Actuators, B: Chemical, 1998, 51(1–3), 77–83.

    Article  Google Scholar 

  8. Raimundo, I.M., Jr. Narayanaswamy, R., Evaluation of Nafion-Crystal Violet films for the construction of an optical relative humidity sensor, Analyst, 1999, 124(11),1623–1627.

    Article  Google Scholar 

  9. Corera, F. P.; Gaston A.; Sevilla, J.; Relative humidity sensor based on side-polished fibre optic, Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, 2000. IMTC 2000.

    Google Scholar 

  10. Ballantine, D.S.; Wohltjen, H., Optical waveguide humidity detector, Analytical Chemistry, 1986, 58(13), 2883–2885.

    Article  Google Scholar 

  11. Russel, A.P.; Fletcher, K.S., Optical sensor for the determination of moisture, Anal. Chim. Acta 1985, 170, 209–216.

    Article  Google Scholar 

  12. Zhou, Q.; Shahriari, M.R.; Kritz, D.; Sigel G.H. Jr., Porous fibre optic sensor for high sensitivity humidity measurements, Anal. Chem. 1988, 60, 2317–2320.

    Article  Google Scholar 

  13. Boltinghouse, F.; Abel, K. Development of an optical relative humidity sensor. Cobalt chloride optical absorbency sensor study, Analytical Chemistry, 1989, 61(17), 1863–1866.

    Article  Google Scholar 

  14. Choi, M.M.F.; Ling, T.O., Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film, Analytica Chimica Acta, 1999, 378(1–3), 127–134.

    Article  Google Scholar 

  15. Otsuki, S.; Adachi, K.; Taguchi T., A novel fibre-optic gas-sensing configuration using extremely curved optical fibres and an attempt for optical humidity detection, Sensors and Actuators, B: Chemical, 1998, 53(1–2), 91–96.

    Article  Google Scholar 

  16. Campo, J.C.; Perez, M.A.; Gonzalez, M.; Ferrero, F.J., Measurement of air moisture by the phosphorescence lifetime of a sol-gel based sensor, Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, 2000. IMTC 2000, 1, 273–276.

    Google Scholar 

  17. Bariain, C.; Matias, I.R.; Arregui, F.J.; Lopez-Amo, M., Optical fibre humidity sensor based on a tapered fibre coated with agarose gel, Sensors and Actuators B, 2000, 69, 127–131.

    Article  Google Scholar 

  18. Gupta, B.D.; Ratnanjali, A novel probe for a fibre optic humidity sensor, Sensors and Actuators B: Chemical, 20 November 2001, 80 (2), 132–135(4).

    Article  Google Scholar 

  19. Corres, J.M.; Arregui, F.J.; Matias, I.R., Sensitivity optimization of tapered optical fibre humidity sensors by means of tuning the thickness of nanostructured sensitive coatings, Sensors and Actuators, B: Chemical, 2007, 122(2), 442–449.

    Article  Google Scholar 

  20. Corres, J.M.; Bravo, J.; Matias, I.R.; Arregui, F.J., Nonadiabatic tapered single-mode fibre coated with humidity sensitive nano-films, IEEE Photonics Technology Letters, 2006, 18(8), 935–937.

    Article  Google Scholar 

  21. Corres, J.M.; Arregui, F.J.; Matias, I.R., Design of humidity sensors based on tapered optical fibres, Journal of Lightwave Technology, 2006, 24(11), 4329–4336.

    Article  Google Scholar 

  22. Matias, I.R.; Arregui, F.J.; Corres, J.M.; Bravo, J., Evanescent field fibre-optic sensors for humidity monitoring based on nanocoatings, IEEE Sensors Journal, 7(1), 89–95.

    Google Scholar 

  23. Bravo, J.; Matias, I.R.; DelVillar, I.; Corres, J.M.; Arregui, F.J., Nano-films on hollow core fibre-based structures: An optical study, Journal of Lightwave Technology, 2006, 24(5), 2100–2107.

    Article  Google Scholar 

  24. Matias, I.R.; Bravo, J.; Arregui, F.J.; Corres, J.M., Nano-films on a hollow core fibre, Optical Engineering, 2006, 45(5), Art. No. 050503.

    Google Scholar 

  25. Del Villar, I.; Corres, J.M.; Achaerandio, M.; Arregui, F.J.; Matias, I.R., Spectral evolution with incremental nanocoating of long period fibre gratings, Optics Express, 2006, 14(25), 11972–11981.

    Article  Google Scholar 

  26. Jindal, R.; Tao, S.; Singh, J.P.; Gaikwad, P.S., High dynamic range fibre optic relative humidity sensor, Opt. Eng., May 2002, 41(5), 1093–1096.

    Article  Google Scholar 

  27. Iler, R.J.J. Multilayers of colloidal particles, Journal of Colloid and Interface Science, June 1966, 21 (6), 569–594.

    Article  Google Scholar 

  28. Decher, G.; Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, 1997, 277: 1232–1237.

    Article  Google Scholar 

  29. Lvov, Y., Ariga, K., Ichinose, I., Kunitake, T., Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption, J. Am. Chem. Soc., 1995, 117(22),6117–6123.

    Article  Google Scholar 

  30. Ariga, K.; Lvov, Y.; Kunitake, T., Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption, J. Am. Chem. Soc., 1997, 119(9), 2224–2231.

    Article  Google Scholar 

  31. Liu, Y.; Wang, A.; Claus, R., Molecular self-assembly of TiO2/polymer nanocomposite films, J. Phys. Chem. B., (Article), 1997, 101(8), 1385–1388.

    Article  Google Scholar 

  32. Liu, Y.J.; Wang, A.B.; Claus, R.O., Layer-by-layer electrostatic self-assembly of nanoscale Fe3O4 particles and polyimide precursor on silicon and silica surfaces. Appl. Phys. Lett., 1997, 71, 2265–2267.

    Article  Google Scholar 

  33. Liu, Y.J.; Wang, A.B.; Claus, R.O., Layer-by-layer ionic self-assembly of Au colloids into multilayer thin-films with bulk metal conductivity, Chem. Phys. Lett., 1998, 298, 315–319.

    Article  Google Scholar 

  34. Lenahan, K. M.; Wang, A. B.; Liu, Y. J.; Claus, R. O., Novel polymer dyes for nonlinear optical applications using ionic self-assembled monolayer technology. Adv. Mater. 1998, 10, 853–855.

    Article  Google Scholar 

  35. Donath, E.; Sukhorukov, G. B.; Caruso, F.; Davis, S.A.; Mohwald, H., Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angewandte Chemie-International Edition, 1998, 37, 2202–2205.

    Article  Google Scholar 

  36. Caruso, F.; Caruso, R. A.; Mohwald, H., Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 1998, 282, 1111–1114.

    Article  Google Scholar 

  37. Caruso, F.; Lichtenfeld, H.; Donath, E.; Mohwald, H., Investigation of electrostatic interactions in polyelectrolyte multilayer films: binding of anionic fluorescent probes to lLayers assembled onto colloids, Macromolecules, 1999, 32, 2317–2328.

    Article  Google Scholar 

  38. Chen, L. H.; McBranch, D. W.; Wang, H. L.; Helgeson, R.; Wudl, F.; Whitten, D. G., Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer, Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12287.

    Article  Google Scholar 

  39. Dubas, S. T.; Schlenoff, J. B., Factors controlling the growth of polyelectrolyte multilayers, Macromolecules, 1999, 32, 8153–8160.

    Article  Google Scholar 

  40. Mamedov, A. A.; Kotov, N. A.; Prato, M.; Guldi, D. M.; Wicksted, J. P.; Hirsch, A., Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nature Materials 2002, 1, 190.

    Article  Google Scholar 

  41. Nakagawa, M.; Oh, S. K.; Ichimura, K., Photopatterning and visualization of adsorbed monolayers of bis(l-benzyl-4-pyridinio)elhylene moieties, Adv. Mater., 2000, 12, 403–407.

    Article  Google Scholar 

  42. Ho, P.K.H.; Kim, J.S.; Burroughes, J.H.; Becker, H.; Li, S.F.Y.; Brown, T.M.; Cacialli, F.; Friend, R.H., Molecular-scale interface engineering for polymer light-emitting diodes, Nature, 2000, 404 (6777), 481–484.

    Article  Google Scholar 

  43. Shiratori, S. S.; Rubner, M. F., pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes, Macromolecules, 2000, 33, 4213–4219.

    Article  Google Scholar 

  44. Bertrand, P.; Jonas, A.; Laschewsky, A.; Legras R., Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: Suitable materials, structure and properties, Macromolecular Rapid Communications, 2000, 21, 319–348.

    Article  Google Scholar 

  45. Mendelsohn, J.D.; Barret, C.J.; Chan, V.V.; Pal, A.J.; Mayes, A.M.; Rubner, M.F., Fabrication of microporous thin films from polyelectrolyte multilayers, Langmuir, 2000, 16, 5017–5023.

    Article  Google Scholar 

  46. Mattoussi, H.; Mauro, J.M.; Goldman, E.R.; Anderson, G.P.; Sundar, V.C.; Mikulec, F.V.; Bawendi, M.G., Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc. 2000, 122, 12142–12150.

    Article  Google Scholar 

  47. Schreiber, F., Structure and growth of self-assembling monolayers, Progress in Surface Science, 2000, 62, 151–256.

    Article  Google Scholar 

  48. Caruso, F., Nanoengineering of particle surfaces, Adv. Mater. 2001, 122, 11–22.

    Article  Google Scholar 

  49. Adams, D.M.; Brus, L.; Chidsey C.E.D.; Creager, S.; Creutz, C.; Kagan, C.R.; Kamat, P.V.; Lieberman, M.; Lindsay, S.; Marcus, R.A.; Metzger, R.M.; Michel-Beyerle, M.E.; Miller, J.R.; Newton, M.D.; Rolison, D.R.; Sankey, O.; Schanze, K.S.; Yardley, J.; Zhu, X.Y., Charge transfer on the nanoscale: Current status, J. Phys. Chem. B, 2003, 107, 6668–6697.

    Article  Google Scholar 

  50. Schönhoff, M., Self-assembled polyelectrolyte multilayers, Current Opinion in Coll. Interf. Sci. 2003, 8, 86.

    Google Scholar 

  51. Thünemann, A.F.; Müller, M.; Dautzenberg, H.; Joanny, J.-F.; Löwen, H., Polyelectrolyte Complexes, Advances in Polymer Science 2004, 166, 113–171.

    Google Scholar 

  52. Hammond, P.T., Form and function in multilayer assembly: New applications at the nanoscale, Adv. Mater. 2004, 16, 1271–1293.

    Article  Google Scholar 

  53. Choi, J.; Rubner, M.F., Influence of the degree of ionization on weak polyelectrolyte multilayer assembly, Macromolecules, 2005, 38, 116–124.

    Article  Google Scholar 

  54. Del Villar, I.; Matias, I.R.; Arregui, F.J., LBL-based in-fibre nanocavity for hydrogen-peroxide detection, IEEE Trans. on Nanotech. 2005, 4, 187–193.

    Article  Google Scholar 

  55. Hu, W.; Liu, Y.; Xu, Y.; Liu, S.; Zhou, S.; Zeng, P.; Zhu, D.B., The gas sensitivity of Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine. Sensor. Actuat. B-Chem., 1999, 56, 228–233.

    Article  Google Scholar 

  56. Bariain, C.; Matias, I.R.; Fernandez-Valdivielso, C.; Arregui, F.J.; Rodríguez-Méndez, M.L.; DLbLja, J.A., Optical fibre sensor based on lutetium bisphthalocyanine for the detection of gases using standard telecommunication wavelengths. Sensor. Actuat. B-Chem., 2003, 93, 153–158.

    Article  Google Scholar 

  57. Gutierrez, N.; Rodríguez-Méndez, M.L.; De Saja, J.A., Array of sensors based on lanthanide bisphthalocyanine Langmuir-Blodgett films for the detection of olive oil aroma. Sensor. Actuat. B-Chem. 2001, 77, 437–442.

    Article  Google Scholar 

  58. Dakin, J.; Culshaw, B., Optical fibre sensors. Principles and components, Norwood, MA: Artech House. 1988, pp. 63–64.

    Google Scholar 

  59. Arregui, F.J.; Matias, I.R.; Liu, Y.J.; Lenahan, K.M.; Claus, R.O., Optical fibre nanometer-scale Fabry-Perot interferometer formed by the ionic self-assembly monolayer process, Opt Lett., 1999, 24, 596–598.

    Article  Google Scholar 

  60. Arregui, F.J.; Liu, Y.; Matias, I.R.; Claus, R.O.; Optical fibre humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method, Sensors and Actuators B 59 1999.54–59

    Article  Google Scholar 

  61. Corres, J. M.; Matias, I. R.; Hernaez, M.; Bravo, J.; Arregui, F. J., Optical fibre humidity sensors using nanostructured coatings of SiO2 nanoparticles, IEEE Sensors Journal, Vol. 8, Issue 3, March 2008, pp. 281–285.

    Google Scholar 

  62. Khalil, S.; Bansal, L.; El-Sherif, M., Intrinsic fibre optic chemical sensor for the detection of dimethyl methylphosphonate. Opt. Eng., 2004, 43, 2683–2688.

    Article  Google Scholar 

  63. Otsuki, S.; Adachi, K.; Taguchi, T.; A novel fibre-optic gas-sensing configuration using extremely curved optical fibres and an attempt for optical humidity detection, Sensors and Actuators B, 1998, 53, 91–96.

    Article  Google Scholar 

  64. Senosiain, J.; Díaz, I.; Gastón, A.; Sevilla, J., High sensitivity temperature sensor based on side-polished optical fibre. IEEE Trans. Instrum. Meas. 2001, 50, 1656–1660.

    Article  Google Scholar 

  65. Sumdia, S.; Okazaki, S.; Asakura, S.; Nakagawa, H.; Murayama, H.; Hasegawa, T., Distributed hydrogen determination with fibre-optic sensor. Sensor. Actuat. B-Chem. 2005, 108, 508–514.

    Article  Google Scholar 

  66. Cherif, K.; Mrazek, J.; Hleli, S.; Matejec, V.; Abdelghani, A.; Chomat, M.; Jaffrezic-Renault, N.; Kasik, I., Detection of aromatic hydrocarbons in air and water by using xerogel layers coated on PCS fibres excited by an inclined collimated beam. Sensor. Actuat. B-Chem., 2003, 95, 97–106.

    Article  Google Scholar 

  67. Suzuki, O.; Miura, M.; Morisawa, M.; Muto, S., POF-type optic humidity sensor and its application (as breathing-condition monitor), in: Proceedings of the 15th Optical Fibre Sensors Conference (OFS 2002), Technical Digest, Orlando, OR, 2002, pp. 447–450.

    Google Scholar 

  68. Yuan, J.; El-Sherif, A. Fibre-optic chemical sensor using polyaniline as modified cladding material. IEEE Sensor. J. 2003, 3, 5–12.

    Article  Google Scholar 

  69. Haddock, H.S.; Shankar, P. M.; Mutharasan, R., Fabrication of biconical tapered optical fibres using hydrofluoric acid. Materials science and engineering B, 2003, 97, 87–93.

    Article  Google Scholar 

  70. Yuan, L.; Qui, A., Analysis of a single-mode fibre with taper lens end, J. Opt. Soc. Am. A, 1992, 9, 950–952.

    Article  Google Scholar 

  71. Senior, J.M., Optical fibre communications. Principles and practice, Prentice Hall, Hertfordshire, 2nd edn., 1992, pp. 40–58.

    Google Scholar 

  72. Black, R.J.; Bourbonnais, R., Core-mode cutoff for finite-cladding lightguides, IEE Proceedings-J., 133 1986, (6), 277–384.

    Google Scholar 

  73. Love, J.D.; Henry, W.M.; Stewart, W.J.; Black, R.J.; Lacroix, S.; Gonthier, F., Tapered single-mode fibres and devices. Part 1: Adiabatic criteria, IEE Proceedings-J, 1991, 138(5), 343–353.

    Google Scholar 

  74. Bobb, L.C.; Shankar, P.M.; Krumboltz, H.D., Bending effects in biconically tapered single-mode fibres, J. Light. and Tech. 1990, 8, 1084–1090

    Article  Google Scholar 

  75. Birks, T. A.; Russell, P.; St. and Pannel, C. N.; Low power acousto-optic device based on a tapered single mode fibre, IEEE Phot. Tech. Let. 1994, 6 725–727.

    Article  Google Scholar 

  76. Shankar, P.M.; Bobb, L. C.; Krumboltz, H.D.; Coupling of modes in bent biconically tapered single-mode fibres, J. of Light. Techn., 1991, 9(7), 832–837.

    Article  Google Scholar 

  77. Matías, I.R.; Corres, J. M.; Arregui, F. J.; Bravo, J., Humidity sensors using nano-films deposited on hollow core fibres, SPIE Newsroom, International Society for Optical Engineering.

    Google Scholar 

  78. Rees, N. D.; James, S. W.; Tatam, R. P.; Ashwell, G. J., Optical fibre long-period gratings with Langmuir-Blodgett thin-film overlays, Opt. Lett., 2002, 27, 686–688.

    Article  Google Scholar 

  79. Del Villar, I.; Achaerandio, M.; Matias, I. R.; Arregui, F. J., Deposition of overlays by electrostatic self-assembly in long-period fibre gratings, Opt. Lett., 2005, 30, 720–722.

    Article  Google Scholar 

  80. Wang, Z. Y.; Heflin, J. R.; Stolen, R. H.; Ramachandran, S., Analysis of optical response of long period fibre gratings to nm-thick thin-film coatings, Opt. Exp., 2005, 13, 2808–2813.

    Article  Google Scholar 

  81. Kim, D.W.; Zhang, Y.; Cooper, K.L.; Wang, A., In-fibre reflection mode interferometer based on a long-period grating for external refractive-index measurement, App. Opt., 2006, 44, 5368.

    Article  Google Scholar 

  82. Chen, Q.; Lee, J.; Lin, M.R.; Wang, Y.; Yin, S.S.; Zhang, Q.M.; Reichard, K.A., Investigation of tuning characteristics of electrically tunable long-period gratings with a precise four-layer model, J. Lightwave Technol., 2006, 24, 2954–2962.

    Article  Google Scholar 

  83. Cusano, A.; Iadicicco, A.; Pilla, P.; Contessa, L.; Campopiano, S.; Cutolo, A.; Giordano, M., Cladding mode reorganization in high-refractive-index-coated long-period gratings: Effects on the refractive-index sensitivity, Opt. Lett., 2005, 30, 2536–2538.

    Article  Google Scholar 

  84. Pilla, P.; Iadicicco, A.; Contessa, L.; Campopiano, S.; Cutolo, A.; Giordano, M.; Cusano, A., Optical chemo-sensor based on long period gratings coated with δ form syndiotactic polystyrene, IEEE Photon. Technol. Lett., 2005, 17, 1713–1715.

    Article  Google Scholar 

  85. Cusano, A.; Iadicicco, A.; Pilla, P.; Contessa, L.; Campopiano, S.; Cutolo, A.; Giordano, M., Mode transition in high refractive index coated long period gratings, Opt. Express, 2006, 14, 19–34.

    Article  Google Scholar 

  86. Erdogan, T.; Fibre grating spectra, J. Lightwave Technol., 1997, 15, 1277–1294.

    Article  Google Scholar 

  87. Anemogiannis, E.; Glytsis E. N.; Gaylord, T. K., Transmission characteristics of long-period fibre gratings having arbitrary azimuthal/radial refractive index variations, J. Lightwave Technol., 2003, 21, 218–227.

    Article  Google Scholar 

  88. Del Villar, I.; Matias, I. R.; Arregui, F. J.; Lalanne, P., Optimization of sensitivity in long period fibre gratings with overlay deposition, Opt. Express, 2005, 13, 56–69.

    Article  Google Scholar 

  89. Del Villar, I.; Matias, I.R.; Arregui, F.J.; Achaerandio, M., Nanodeposition of materials with complex refractive index in long-period fibre gratings, Journal of Lightwave Technology, 2005, 23(12), 4192–4199.

    Article  Google Scholar 

  90. Chung, K.W.; Yin, S., Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling, Opt. Lett., 2004, 29, 812–814.

    Article  Google Scholar 

  91. Lyons, E.R.; Lee, H.P., Demonstration of an etched cladding fibre Bragg grating filter with reduced tuning force requirement, IEEE Photon. Technol. Lett., 1999, 11, 1626–1628.

    Article  Google Scholar 

  92. Viegas, D.; Goicoechea, J.; Corres, J.M.; Matias, I.R.; Araújo, F.M.; Santos, J.L., Humidity sensing based on SiO_2-nanospheres onto a Long-Period Fibre Grating, OFS-2008 Optical Fibre Sensors International Conference.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Corres, J.M., Matias, I.R., Arregui, F.J. (2008). Optical Fibre Humidity Sensors Using Nano-films. In: Mukhopadhyay, S., Huang, R. (eds) Sensors. Lecture Notes Electrical Engineering, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69033-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69033-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69030-6

  • Online ISBN: 978-3-540-69033-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics