Skip to main content

Learning and Validating Bayesian Network Models of Gene Networks

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 213))

Abstract

We propose a framework for learning from data and validating Bayesian network models of gene networks. The learning phase selects multiple locally optimal models of the data and reports the best of them. The validation phase assesses the confidence in the model reported by studying the different locally optimal models obtained in the learning phase. We prove that our framework is asymptotically correct under the faithfulness assumption. Experiments with real data (320 samples of the expression levels of 32 genes involved in Saccharomyces cerevisiae, i.e. baker’s yeast, pheromone response) show that our framework is reliable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, A. and Hartemink, A. J. (2005) Informative Structure Priors: Joint Learning of Dynamic Regulatory Networks from Multiple Types of Data. In Pacific Symposium on Biocomputing 10.

    Google Scholar 

  2. Blake, W. J., Kærn, M., Cantor, C. R. and Collins, J. J. (2003) Noise in Eukaryotic Gene Expression. Nature 422:633-637.

    Article  Google Scholar 

  3. Castelo, R. and Kočka, T. (2003) On Inclusion-Driven Learning of Bayesian Networks. Journal of Machine Learning Research 4:527-574.

    MathSciNet  MATH  Google Scholar 

  4. Chickering, D. M. (1996) Learning Bayesian Networks is NP-Complete. In Learning from Data: Artificial Intelligence and Statistics V:121-130.

    MathSciNet  Google Scholar 

  5. Chickering, D. M. (2002) Optimal Structure Identification with Greedy Search. Journal of Machine Learning Research 3:507-554.

    MathSciNet  MATH  Google Scholar 

  6. Cooper, G. and Herskovits, E. H. (1992) A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning 9:309-347.

    MATH  Google Scholar 

  7. Costanzo, M. C., Crawford, M. E., Hirschman, J. E., Kranz, J. E., Olsen, P., Robertson, L. S., Skrzypek, M. S., Braun, B. R., Hopkins, K. L., Kondu, P., Lengieza, C., Lew-Smith, J. E., Tillberg, M. and Garrels, J. I. (2001) YPD, PombePD and WormPD: Model Organism Volumes of the BioKnowledge Library, an Integrated Resource for Protein Information. Nucleic Acids Research 29:75-79.

    Article  Google Scholar 

  8. Elion, E. A. (2000) Pheromone Response, Mating and Cell Biology. Current Opinion in Microbiology 3:573-581.

    Article  Google Scholar 

  9. Friedman, N. (2004) Inferring Cellular Networks Using Probabilistic Graphical Models. Science 303:799-805.

    Article  Google Scholar 

  10. Friedman, N., Goldszmidt, M. and Wyner, A. (1999) Data Analysis with Bayesian Networks: A Bootstrap Approach. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence 196-205.

    Google Scholar 

  11. Friedman, N. and Koller, D. (2003) Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks. Machine Learning 50:95-125.

    MATH  Google Scholar 

  12. Friedman, N., Linial, M., Nachman, I. and Pe’er, D. (2000) Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology 7:601-620.

    Article  Google Scholar 

  13. Gavin, I. M., Kladde, M. P. and Simpson, R. T. (2000) Tup1p Represses Mcm1p Transcriptional Activation and Chromatin Remodeling of an a-Cell-Specific Gene. The EMBO Journal 19:5875-5883.

    Article  Google Scholar 

  14. Hartemink, A. J., Gifford, D. K., Jaakkola, T. S. and Young, R. A. (2002) Combining Location and Expression Data for Principled Discovery of Genetic Regulatory Network Models. In Pacific Symposium on Biocomputing 7:437-449.

    Google Scholar 

  15. Heckerman, D., Geiger, D. and Chickering, D. M. (1995) Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning 20:197-243.

    MATH  Google Scholar 

  16. Herskovits, E. H. (1991) Computer-Based Probabilistic-Network Construction. PhD Thesis, Stanford University.

    Google Scholar 

  17. Imoto, S., Goto, T. and Miyano, S. (2002) Estimation of Genetic Networks and Functional Structures Between Genes by Using Bayesian Network and Nonparametric Regression. In Pacific Symposium on Biocomputing 7:175-186.

    Google Scholar 

  18. McAdams, H. H. and Arkin, A. (1997) Stochastic Mechanisms in Gene Expression. In Proceedings of the National Academy of Science of the USA 94:814-819.

    Google Scholar 

  19. Nielsen, J. D., Kočka, T. and Peña, J. M. (2003) On Local Optima in Learning Bayesian Networks. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence 435-442.

    Google Scholar 

  20. Pe’er, D., Regev, A., Elidan, G. and Friedman, N. (2001) Inferring Subnetworks from Perturbed Expression Profiles. Bioinformatics 17:S215-S224.

    Article  Google Scholar 

  21. Peña, J. M., Björkegren, J. and Tegnér, J. (2005) Growing Bayesian Network Models of Gene Networks from Seed Genes. Bioinformatics 21:ii224-ii229.

    Article  Google Scholar 

  22. Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T. L., Wilson, C. J., Bell, S. P. and Young, R. A. (2000) Genome-Wide Location and Function of DNA Binding Proteins. Science 290:2306-2309.

    Article  Google Scholar 

  23. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A. and Nolan, G. P. (2005) Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science 308:523-529.

    Article  Google Scholar 

  24. Schwarz, G. (1978) Estimating the Dimension of a Model. Annals of Statistics 6:461-464.

    Article  MathSciNet  Google Scholar 

  25. Sebastiani, P., Gussoni, E., Kohane, I. S. and Ramoni, M. (2003) Statistical Challenges in Functional Genomics (with Discussion). Statistical Science 18:33-60.

    Article  MathSciNet  Google Scholar 

  26. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998) Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9:3273-3297.

    Article  Google Scholar 

  27. Spirtes, P., Glymour, C. and Scheines, R. (1993) Causation, Prediction, and Search. Springer-Verlag, New York.

    Google Scholar 

  28. Studený, M. (2003) Characterization of Inclusion Neighbourhood in Terms of the Essential Graph: Upper Neighbours. In Proceedings of the Seventh European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty 161-172.

    Google Scholar 

  29. Studený, M. (2003) Characterization of Inclusion Neighbourhood in Terms of the Essential Graph: Lower Neighbours. In Proceedings of the Sixth Workshop on Uncertainty Processing 243-262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peña, J.M., Björkegren, J., Tegnér, J. (2007). Learning and Validating Bayesian Network Models of Gene Networks. In: Lucas, P., Gámez, J.A., Salmerón, A. (eds) Advances in Probabilistic Graphical Models. Studies in Fuzziness and Soft Computing, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68996-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68996-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68994-2

  • Online ISBN: 978-3-540-68996-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics