Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

Cyclic guanosine 3′, 5′-monophosphate (cGMP) plays an integral role in the control of vascular function. Generated from guanylate cyclases in response to the endogenous ligands, nitric oxide (NO) and natriuretic peptides (NPs), cGMP influences a number of vascular cell types and regulates vasomotor tone, endothelial permeability, cell growth and differentiation, as well as platelet and blood cell interactions. Reciprocal regulation of the NO-cGMP and NP-cGMP pathways is evident in the vasculature such that one cGMP generating system may compensate for the dysfunction of the other. Indeed, aberrant cGMP production and/or signalling accompanies many vascular disorders such as hypertension, atherosclerosis, coronary artery disease and diabetic complications. This chapter highlights the main vascular functions of cGMP, its role in disease and the resulting current and potential therapeutic applications. With respect to pulmonary hypertension, heart failure and erectile dysfunction, as well as cGMP signal transduction, the reader is specifically referred to other dedicated chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahluwalia A, Foster P, Scotland RS, McLean PG, Mathur A, Perretti M, Moncada S, Hobbs AJ (2004a) Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc Natl Acad Sci USA 101:1386–1391

    CAS  Google Scholar 

  • Ahluwalia A, MacAllister RJ, Hobbs AJ (2004b) Vascular actions of natriuretic peptides. Cyclic GMP-dependent and -independent mechanisms. Basic Res Cardiol 99(2):83–89

    CAS  Google Scholar 

  • Alioua A, Tanaka Y, Wallner M, Hofmann F, Ruth P, Meera P, Toro L (1998) The large conductance, voltage-dependent, and calcium-sensitive K + channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo. J Biol Chem 273:32950–32956

    PubMed  CAS  Google Scholar 

  • Ardanaz N, Pagano PJ (2006) Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med 231:237–251

    CAS  Google Scholar 

  • Arjona AA, Hsu CA, Wrenn DS, Hill NS (1997) Effects of natriuretic peptides on vascular smooth-muscle cells derived from different vascular beds. Gen Pharmacol 28:387–392

    PubMed  CAS  Google Scholar 

  • August M, Wingerter O, Oelze M, Wenzel P, Kleschyov AL, Daiber A, Mülsch A, Münzel T, Tsilimingas N (2006) Mechanisms underlying dysfunction of carotid arteries in genetically hyperlipidemic rabbits. Nitric Oxide 15:241–251

    PubMed  CAS  Google Scholar 

  • Banks M, Wei CM, Kim CH, Burnett JC Jr, Miller VM (1996) Mechanism of relaxations to C-type natriuretic peptide in veins. Am J Physiol 271:H1907–H1911

    PubMed  CAS  Google Scholar 

  • Biel M, Michalakis S (2007) Function and dysfunction of CNG channels: insights from chan-nelopathies and mouse models. Mol Neurobiol 35:266–277

    PubMed  CAS  Google Scholar 

  • Böger RH (2007) The pharmacodynamics of L-arginine. J Nutr 137(Suppl 2):1650S–1655S

    PubMed  Google Scholar 

  • Boolell M, Gepi-Attee S, Gingell JC, Allen MJ (1996) Sildenafil, a novel effective oral therapy for male erectile dysfunction. Br J Urol 78:257–261

    PubMed  CAS  Google Scholar 

  • Brüne B, Ullrich V (1987) Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 32:497–504

    PubMed  Google Scholar 

  • Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schröder E, Browning DD, Eaton P (2007) Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317:1393–1397

    PubMed  CAS  Google Scholar 

  • Burke-Wolin T, Abate CJ, Wolin MS, Gurtner GH (1991) Hydrogen peroxide-induced pulmonary vasodilation: role of guanosine 3′,5′-cyclic monophosphate. Am J Physiol 261:L393–L398

    PubMed  CAS  Google Scholar 

  • Butt E, Nolte C, Schulz S, Beltman J, Beavo JA, Jastorff B, Walter U (1992) Analysis of the functional role of cGMP-dependent protein kinase in intact human platelets using a specific activator 8-para-chlorophenylthio-cGMP Biochem Pharmacol 43:2591–2600

    PubMed  CAS  Google Scholar 

  • Butt E, Bernhardt M, Smolenski A, Kotsonis P, Frohlich LG, Sickmann A, Meyer HE, Lohmann SM, Schmidt HH (2000) Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases. J Biol Chem 275:5179–5187

    PubMed  CAS  Google Scholar 

  • Cahill PA, Hassid A (1991) Clearance receptor-binding atrial natriuretic peptides inhibit mitogenesis and proliferation of rat aortic smooth muscle cells. Biochem Biophys Res Commun 179:1606–1613

    PubMed  CAS  Google Scholar 

  • Casco VH, Veinot JP, Kuroski de Bold ML, Masters RG, Stevenson MM, de Bold AJ (2002) Natriuretic peptide system gene expression in human coronary arteries. J Histochem Cytochem 50:799–809

    PubMed  CAS  Google Scholar 

  • Castro LR, Verde I, Cooper DM, Fischmeister R (2006) Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113:2221–2228

    PubMed  CAS  Google Scholar 

  • Cerra MC, Pellegrino D (2007) Cardiovascular cGMP-generating systems in physiological and pathological conditions. Current Med Chem 14:585–599

    CAS  Google Scholar 

  • Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ (2003) Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Acad Sci USA 100:1426–1431

    PubMed  CAS  Google Scholar 

  • Cohen AH, Hanson K, Morris K, Fouty B, McMurty IF, Clarke W, Rodman DM (1996) Inhibition of cyclic 3′–5′-guanosine monophosphate-specific phosphodiesterase selectively vasodilates the pulmonary circulation in chronically hypoxic rats. J Clin Invest 97:172–179

    PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    PubMed  CAS  Google Scholar 

  • Corbin JD, Beasley A, Blount MA, Francis SH (2005) High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem Biophys Res Commun 334(3): 930–938

    PubMed  CAS  Google Scholar 

  • Corti R, Burnett JC Jr, Rouleau JL, Ruschitzka F, Lüscher TF (2001) Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? Circulation 104:1856–1862

    PubMed  CAS  Google Scholar 

  • Doi K, Ikeda T, Itoh H, Ueyama K, Hosoda K, Ogawa Y, Yamashita J, Chun TH, Inoue M, Masatsugu K, Sawada N, Fukunaga Y, Saito T, Sone M, Yamahara K, Kook H, Komeda M, Ueda M, Nakao K (2001) C-type natriuretic peptide induces redifferentiation of vascular smooth muscle cells with accelerated reendothelialization. Arterioscler Thromb Vasc Biol 21:930–936

    PubMed  CAS  Google Scholar 

  • Draijer R, Vaandrager AB, Nolte C, de Jonge HR, Walter U, van Hinsbergh VW (1995) Expression of cGMP-dependent protein kinase I and phosphorylation of its substrate, vasodilator-stimulated phosphoprotein, in human endothelial cells of different origin. Circ Res 77:897–905

    PubMed  CAS  Google Scholar 

  • Ellerbroek SM, Wennerberg K, Burridge K (2003) Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 278:19023–19031

    PubMed  CAS  Google Scholar 

  • Evgenov OV, Pacher P, Schmidt PM, Haskò G, Schmidt HH, Stasch JP (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5:755–768

    PubMed  CAS  Google Scholar 

  • Feil R, Feil S, Hofmann F (2005) A heretical view on the role of NO and cGMP in vascular proliferative diseases. Trends Mol Med 11:71–75

    PubMed  CAS  Google Scholar 

  • Fernandes D, da Silva-Santos JE, Duma D, Villela CG, Barja-Fidalgo C, Assreuy J (2006) Nitric oxide-dependent reduction in soluble guanylate cyclase functionality accounts for early lipopolysaccharide-induced changes in vascular reactivity. Mol Pharmacol 69:983–990

    PubMed  CAS  Google Scholar 

  • Forssmann W, Meyer M, Forssmann K (2001) The renal urodilatin system: clinical implications. Cardiovasc Res 51:450–462

    PubMed  CAS  Google Scholar 

  • Friebe A, Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93: 96–105

    PubMed  CAS  Google Scholar 

  • Friebe A, Schultz G, Koesling D (1996) Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. EMBO J 15:6863–6868

    PubMed  CAS  Google Scholar 

  • Fries R, Shariat K, von Wilmowsky H, Böhm M (2005) Sildenafil in the treatment of Raynaud's phenomenon resistant to vasodilatory therapy. Circulation 112:2980–2985

    PubMed  CAS  Google Scholar 

  • Fujimoto S, Asano T, Sakai M, Sakurai K, Takagi D, Yoshimoto N, Itoh T (2001) Mechanisms of hydrogen peroxide-induced relaxation in rabbit mesenteric small artery. Eur J Pharmacol 412:291–300

    PubMed  CAS  Google Scholar 

  • Fukao M, Mason HS, Britton FC, Kenyon JL, Horowitz B, Keef KD (1999) Cyclic GMP-dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. J Biol Chem 274:10927–10935

    PubMed  CAS  Google Scholar 

  • Furuya M, Yoshida M, Hayashi Y, Ohnuma N, Minamino N, Kangawa K, Matsuo H (1991) C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem Biophys Res Commun 177:927–931

    PubMed  CAS  Google Scholar 

  • Furuya M, Aisaka K, Miyazaki T, Honbou N, Kawashima K, Ohno T, Tanaka S, Minamino N, Kangawa K, Matsuo H (1993) C-type natriuretic peptide inhibits intimal thickening after vascular injury. Biochem Biophys Res Commun 193:248–253

    PubMed  CAS  Google Scholar 

  • Gambaryan S, Kobsar A, Hartmann S, Birschmann I, Kuhlencordt PJ, Müller-Esterl W, Lohmann SM, Walter U (2008) NO-synthase-/NO-independent regulation of human and murine platelet soluble guanylyl cyclase activity. J Thromb Haemost. [Epub ahead of print]

    Google Scholar 

  • Gao YJ, Hirota S, Zhang DW, Janssen LJ, Lee RM (2003) Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery. Br J Pharmacol 138:1085–1092

    PubMed  CAS  Google Scholar 

  • Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, Krause KH (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580:497–504

    PubMed  CAS  Google Scholar 

  • Geiselhöringer A, Werner M, Sigl K, Smital P, Wörner R, Acheo L, Stieber J, Weinmeister P, Feil R, Feil S, Wegener J, Hofmann F, Schlossmann J (2004) IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. EMBO J. 23:4222–4231

    PubMed  Google Scholar 

  • Hassid A, Arabshahi H, Bourcier T, Dhaunsi GS, Matthews C (1994) Nitric oxide selectively amplifies FGF-2-induced mitogenesis in primary rat aortic smooth muscle cells. Am J Physiol 267:H1040–H1048

    PubMed  CAS  Google Scholar 

  • Hein TW, Xu W, Kuo L (2006) Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylate cyclase, and ATP-sensitive potassium channels. Invest Ophthalmol Vis Sci 47:693–699

    PubMed  Google Scholar 

  • Hempel A, Noll T, Muhs A, Piper HM (1996) Functional antagonism between cAMP and cGMP on permeability of coronary endothelial monolayers. Am J Physiol 270:H1264–H1271

    PubMed  CAS  Google Scholar 

  • Hessellund A, Aalkjaer C, Bek T (2006) Effect of cyclic guanosine-monophosphate on porcine retinal vasomotion. Acta Ophthalmol Scand 84:228–233

    PubMed  CAS  Google Scholar 

  • Hobbs AJ, Moncada S (2003) Antiplatelet properties of a novel, non-NO-based soluble guanylate cyclase activator, BAY 41–2272. Vascul Pharmacol 40:149–154

    PubMed  CAS  Google Scholar 

  • *Hobbs A (2007) Exploiting the natriuretic peptide system for the treatment of pulmonary hypertension. Proceedings of the 3rd International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Google Scholar 

  • Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    PubMed  CAS  Google Scholar 

  • Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239–242

    PubMed  CAS  Google Scholar 

  • Hussain MB, MacAllister RJ, Hobbs AJ (2001) Reciprocal regulation of cGMP-mediated vasore-laxation by soluble and particulate guanylate cyclases. Am J Physiol 280:H1151–H1159

    CAS  Google Scholar 

  • Ibarra-Alvarado C, Galle J, Melichar VO, Mameghani A, Schmidt HHHW (2002) Phosphorylation of blood vessel vasodilator-stimulated phosphoprotein at serine 239 as a functional biochemical marker of endothelial nitric oxide/cyclic GMP signaling. Mol Pharmacol 61:312–319

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wei LH, Bauer PM, Wu G, del Soldato P (2001) Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 98:4202–4208

    PubMed  CAS  Google Scholar 

  • Iida Y, Katusic ZS (2000) Mechanisms of cerebral arterial relaxations to hydrogen peroxide. Stroke 31:2224–2230

    PubMed  CAS  Google Scholar 

  • Ishikura F, Beppu S, Asanuma T, Seward JB, Khandheria BK (2007) Sildenafil citrate (Viagra) enhances vasodilatation by atrial natriuretic peptide in normal dogs. Circ J 71:1965–1969

    PubMed  CAS  Google Scholar 

  • Itoh H, Pratt RE, Dzau VJ (1990) Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest 86:1690–1697

    PubMed  CAS  Google Scholar 

  • Jebelovszki E, Kiraly C, Erdei N, Feher A, Pasztor ET, Rutkai I, Forster T, Edes I, Koller A, Bagi Z (2008) High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation. Am J Physiol Heart Circ Physiol 294:H2558–H2564

    PubMed  CAS  Google Scholar 

  • Jedlitschky G, Burchell B, Keppler D (2000) The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 275:30069–30074

    PubMed  CAS  Google Scholar 

  • Jeremy JY, Rowe D, Emsley AM, Newby AC (1999) Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc Res 43:580–594

    PubMed  CAS  Google Scholar 

  • John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O (1995) Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267: 679–681

    PubMed  CAS  Google Scholar 

  • Kaczorowski DJ, Zuckerbraun BS (2007) Carbon monoxide: medicinal chemistry and biological effects. Curr Med Chem. 14:2720–2725

    PubMed  CAS  Google Scholar 

  • Kagota S, Yamaguchi Y, Tanaka N, Kubota Y, Kobayashi K, Nejime N, Nakamura K, Kunitomo M, Shinozuka K (2006) Disturbances in nitric oxide/cyclic guanosine monophosphate system in SHR/NDmcr-cp rats, a model of metabolic syndrome. Life Sci 78:1187–1196

    PubMed  CAS  Google Scholar 

  • Kemp-Harper B, Feil R (2008) Meeting report: cGMP matters. Sci Signal 1:pe12

    PubMed  Google Scholar 

  • Kiemer AK, Vollmar AM (1998) Autocrine regulation of inducible nitric-oxide synthase in macrophages by atrial natriuretic peptide. J Biol Chem 273:13444–13451

    PubMed  CAS  Google Scholar 

  • Kiemer AK, Hartung T, Vollmar AM (2000) cGMP-mediated inhibition of TNF-alpha production by the atrial natriuretic peptide in murine macrophages. J Immunol 165:175–181

    PubMed  CAS  Google Scholar 

  • Kiemer AK, Fürst R, Vollmar AM (2005) Vasoprotective actions of the atrial natriuretic peptide. Curr Med Chem Cardiovasc Hematol Agents 3:11–21

    PubMed  CAS  Google Scholar 

  • Kirsch M, Kemp-Harper B, Weissmann N, Grimminger F, Schmidt HHHW (2008) Sildenafil in hypoxic pulmonary hypertension potentiates a compensatory up-regulation of NO-cGMP signalling. FASEB J 22:30–40

    PubMed  CAS  Google Scholar 

  • Koeppen M, Feil R, Siegl D, Feil S, Hofmann F, Pohl U, de Wit C (2004) cGMP-dependent protein kinase mediates NO- but not acetylcholine-induced dilations in resistance vessels in vivo. Hypertension 44:952–955

    PubMed  CAS  Google Scholar 

  • Koller A, Schlossmann J, Ashman K, Uttenweiler-Joseph S, Ruth P, Hofmann F (2003) Association of phospholamban with a cGMP kinase signaling complex. Biochem Biophys Res Commun 300:155–160

    PubMed  CAS  Google Scholar 

  • Kook H, Itoh H, Choi BS, Sawada N, Doi K, Hwang TJ, Kim KK, Arai H, Baik YH, Nakao K (2003) Physiological concentration of atrial natriuretic peptide induces endothelial regeneration in vitro. Am J Physiol 284:H1388–H1397

    CAS  Google Scholar 

  • Koyama H, Bornfeldt KE, Fukumoto S, Nishizawa Y (2001) Molecular pathways of cyclic nucleotide-induced inhibition of arterial smooth muscle cell proliferation. J Cell Physiol 186: 1–10

    PubMed  CAS  Google Scholar 

  • Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655

    PubMed  CAS  Google Scholar 

  • Leppert J, Ringqvist A, Ahlner J, Myrdal U, Walker-Engstrom ML, Wennmalm A, Ringqvist I (1997) Seasonal variations in cyclic GMP response on whole-body cooling in women with primary Raynaud's phenomenon. Clin Sci (Lond) 93:175–179

    CAS  Google Scholar 

  • Levien TL (2006) Phosphodiesterase inhibitors in Raynaud's phenomenon. Ann Pharmacother 40:1388–1393

    PubMed  CAS  Google Scholar 

  • Li L, Moore PK (2007) An overview of the biological significance of endogenous gases: new roles for old molecules. Biochem Soc Trans 35:1138–1141

    PubMed  CAS  Google Scholar 

  • Li Z, Xi X, Gu M, Feil R, Ye RD, Eigenthaler M, Hofmann F, Du X (2003) A stimulatory role for cGMP-dependent protein kinase in platelet activation. Cell 112:77–86

    PubMed  CAS  Google Scholar 

  • Liu S, Ma X, Gong M, Shi L, Lincoln T, Wang S (2007) Glucose down-regulation of cGMP-dependent protein kinase I expression in vascular smooth muscle cells involves NAD(P)H oxidase-derived reactive oxygen species. Free Radic Biol Med 42:852–863

    PubMed  Google Scholar 

  • Lukowski R, Weinmeister P, Bernhard D, Feil S, Gotthardt M, Herz J, Massberg S, Zernecke A, Weber C, Hofmann F, Feil R (2008) Role of smooth muscle cGMP/cGKI signaling in murine vascular restenosis. Arterioscler Thromb Vasc Biol8. 28:1244–1250

    Google Scholar 

  • MacPherson JD, Gillespie TD, Dunkerley HA, Maurice DH, Bennett BM (2006) Inhibition of phosphodiesterase 5 selectively reverses nitrate tolerance in the venous circulation. J Pharmacol Exp Ther 317:188–195

    PubMed  CAS  Google Scholar 

  • Madhani M, Scotland RS, MacAllister RJ, Hobbs AJ (2003) Vascular natriuretic peptide receptor-linked particulate guanylate cyclases are modulated by nitric oxide-cyclic GMP signalling. Br J Pharmacol 139:1289–1296

    PubMed  CAS  Google Scholar 

  • Madhani M, Okorie M, Hobbs AJ, MacAllister RJ (2006) Reciprocal regulation of human soluble and particulate guanylate cyclases in vivo. Br J Pharmacol 149:797–801

    PubMed  CAS  Google Scholar 

  • Massberg S, Sausbier M, Klatt P, Bauer M, Pfeifer A, Siess W, Fassler R, Ruth P, Krombach F, Hofmann F (1999) Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′, 5′-monophosphate kinase I. J Exp Med 189(8):1255′1264

    PubMed  CAS  Google Scholar 

  • Melichar VO, Behr-Roussel D, Zabel U, Uttenthal LO, Rodrigo J, Rupin A, Verbeuren TJ, Kumar HSA, Schmidt HH (2004) Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis. Proc Natl Acad Sci USA 101:16671′16676

    PubMed  CAS  Google Scholar 

  • Melo LG, Veress AT, Chong CK, Pang SC, Flynn TG, Sonnenberg H (1998) Salt-sensitive hypertension in ANP knockout mice: potential role of abnormal plasma renin activity. Am J Physiol 274:R255–R261

    PubMed  CAS  Google Scholar 

  • Mergia E, Friebe A, Dangel O, Russwurm M, Koesling D (2006) Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest 116:1731–1737

    PubMed  CAS  Google Scholar 

  • Meyer DJ Jr, Huxley VH (1992) Capillary hydraulic conductivity is elevated by cGMP-dependent vasodilators. Circ Res 70:382–391

    PubMed  CAS  Google Scholar 

  • Michel CC (1998) Capillaries, caveolae, calcium and cyclic nucleotides: a new look at microvascular permeability. J Mol Cell Cardiol 30:2541–2546

    PubMed  CAS  Google Scholar 

  • Mingone CJ, Gupte SA, Ali N, Oeckler RA, Wolin MS (2006a) Thiol oxidation inhibits nitric oxide-mediated pulmonary artery relaxation and guanylate cyclase stimulation. Am J Physiol 290:L549–L557

    CAS  Google Scholar 

  • Mingone CJ, Gupte SA, Chow JL, Ahmad M, Abraham NG, Wolin MS (2006b) Protoporphyrin IX generation from delta-aminolevulinic acid elicits pulmonary artery relaxation and soluble guanylate cyclase activation. Am J Physiol 291:L337–L344

    CAS  Google Scholar 

  • Mingone CJ, Ahmad M, Gupte SA, Chow JL, Wolin MS (2008) Heme oxygenase-1 induction depletes heme and attenuates pulmonary artery relaxation and guanylate cyclase activation by nitric oxide. Am J Physiol 294:H1244–H1250

    CAS  Google Scholar 

  • Moncada S, Higgs EA (2006) The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147 (Suppl 1):S193–S201

    PubMed  CAS  Google Scholar 

  • Mullershausen F, Friebe A, Feil R, Thompson WJ, Hofmann F, Koesling D (2003) Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling. J Cell Biol 160:719–727

    PubMed  CAS  Google Scholar 

  • Müllershausen F, Lange A, Mergia E, Friebe A, Koesling D (2006) Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways. Mol Pharmacol 69:1969–1974

    PubMed  Google Scholar 

  • Münzel T, Feil R, Mülsch A, Lohmann SM, Hofmann F, Walter U (2003) Physiology and pathophysiology of vascular signaling controlled by guanosine 3′,5′-cyclic monophosphate-dependent protein kinase. Circulation 108:2172–2183

    PubMed  Google Scholar 

  • Nausch LW, Ledoux J, Bonev AD, Nelson MT, Dostmann WR (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci USA 105:365–370

    PubMed  CAS  Google Scholar 

  • Nedvetsky PI, Meurer S, Opitz N, Nedvetskaya TY, Müller H, Schmidt HH (2008) Heat shock protein 90 regulates stabilization rather than activation of soluble guanylate cyclase. FEBS Lett 582:327–331

    PubMed  CAS  Google Scholar 

  • Nolte C, Eigenthaler M, Horstrup K, Honig-Liedl P, Walter U (1994) Synergistic phosphorylation of the focal adhesion-associated vasodilator-stimulated phosphoprotein in intact human platelets in response to cGMP- and cAMP-elevating platelet inhibitors. Biochem Pharmacol 48:1569–1575

    PubMed  CAS  Google Scholar 

  • Ohno N, Itoh H, Ikeda T, Ueyama K, Yamahara K, Doi K, Yamashita J, Inoue M, Masatsugu K, Sawada N, Fukunaga Y, Sakaguchi S, Sone M, Yurugi T, Kook H, Komeda M, Nakao K (2002) Accelerated reendothelialization with suppressed thrombogenic property and neointimal hyperplasia of rabbit jugular vein grafts by adenovirus-mediated gene transfer of C-type natriuretic peptide. Circulation 105:1623–1626

    PubMed  CAS  Google Scholar 

  • Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735

    PubMed  CAS  Google Scholar 

  • Otterbein LE, Zuckerbraun BS, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith RN, Csizmadia E, Tyagi S, Akamatsu Y, Flavell RJ, Billiar TR, Tzeng E, Bach FH, Choi AM, Soares MP (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190

    PubMed  CAS  Google Scholar 

  • Pedram A, Razandi M, Kehrl J, Levin ER (2000) Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins. J Biol Chem 275:7365–7372

    PubMed  CAS  Google Scholar 

  • Pelligrino DA, Wang Q (1998) Cyclic nucleotide crosstalk and the regulation of cerebral vasodilation. Prog Neurobiol 56:1–18

    PubMed  CAS  Google Scholar 

  • Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, Aszòdi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fassler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17:3045–3051

    PubMed  CAS  Google Scholar 

  • Piggott LA, Hassell KA, Berkova Z, Morris AP, Silberbach M, Rich TC (2006) Natriuretic peptides and nitric oxide stimulate cGMP synthesis in different cellular compartments. J Gen Physiol 128:3–14

    PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1987) The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 148:1482–1489

    PubMed  CAS  Google Scholar 

  • Raeymaekers L, Hofmann F, Casteels R (1988) Cyclic GMP-dependent protein kinase phosphorylates phospholamban in isolated sarcoplasmic reticulum from cardiac and smooth muscle. Biochem J 252:269–273

    PubMed  CAS  Google Scholar 

  • Ramirez R, Chong T, Curran B, Victorino GP (2006) Role of endothelin-1 and cyclic nucleotides in ischemia/reperfusion-mediated microvascular leak. J Trauma 60:515–520

    PubMed  CAS  Google Scholar 

  • Rose RA, Giles WR (2008) Natriuretic peptide C receptor signalling in the heart and vasculature. J Physiol 586:353–366

    PubMed  CAS  Google Scholar 

  • Rosenkranz S, Diet F, Karasch T, Weihrauch J, Wassermann K, Erdmann E (2003) Sildenafil improved pulmonary hypertension and peripheral blood flow in a patient with scleroderma-associated lung fibrosis and the raynaud phenomenon. Ann Intern Med 139:871–873

    PubMed  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Feil R, Hofmann F, Beavo JA (2002) Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J Biol Chem 277:3310–3317

    PubMed  CAS  Google Scholar 

  • Sabrane K, Gambaryan S, Brandes RP, Holtwick R, Voss M, Kuhn M (2003) Increased sensitivity to endothelial nitric oxide (NO) contributes to arterial normotension in mice with vascular smooth muscle-selective deletion of the atrial natriuretic peptide (ANP) receptor. J Biol Chem 278:17963–17968

    PubMed  CAS  Google Scholar 

  • Sand A, Andersson E, Fried G (2006) Nitric oxide donors mediate vasodilation in human placental arteries partly through a direct effect on potassium channels. Placenta 27:181–190

    PubMed  CAS  Google Scholar 

  • Sathishkumar K, Ross RG, Bawankule DU, Sardar KK, Prakash VR, Mishra SK (2005) Segmental heterogeneity in the mechanism of sodium nitroprusside-induced relaxation in ovine pulmonary artery. J Cardiovasc Pharmacol 45:491–498

    PubMed  CAS  Google Scholar 

  • Sato A, Sakuma I, Gutterman DD (2003) Mechanism of dilation to reactive oxygen species in human coronary arterioles. Am J Physiol 285:H2345–H2354

    CAS  Google Scholar 

  • Schäfer A, Fraccarollo D, Pförtsch S, Flierl U, Vogt C, Pfrang J, Kobsar A, Renné T, Eigenthaler M, Ertl G, Bauersachs J (2008) Improvement of vascular function by acute and chronic treatment with the PDE-5 inhibitor sildenafil in experimental diabetes mellitus. Br J Pharmacol 153: 886–893

    PubMed  Google Scholar 

  • Scherer-Oppliger T, Leimbacher W, Blau N, Thöny B (1999) Serine 19 of human 6-pyruvoyltetrahydropterin synthase is phosphorylated by cGMP protein kinase II. J Biol Chem 274:31341–31348

    PubMed  CAS  Google Scholar 

  • Schleicher M, Sessa WC (2008) Are the mechanisms for NO-dependent vascular remodeling different from vasorelaxation in vivo? Arterioscler Thromb Vasc Biol 28:1207–1208

    PubMed  CAS  Google Scholar 

  • Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404:197–201

    PubMed  CAS  Google Scholar 

  • Schwarz UR, Walter U, Eigenthaler M (2001) Taming platelets with cyclic nucleotides. Biochem Pharmacol 62:1153–1161

    PubMed  CAS  Google Scholar 

  • Scotland RS, Ahluwalia A, Hobbs AJ (2005) C-type natriuretic peptide in vascular physiology and disease. Pharmacol Ther 105:85–93

    PubMed  CAS  Google Scholar 

  • Sharma VS, Magde D (1999) Activation of soluble guanylate cyclase by carbon monoxide and nitric oxide: a mechanistic model. Methods 19:494–505

    PubMed  CAS  Google Scholar 

  • Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 93:13176–13181

    PubMed  CAS  Google Scholar 

  • Slupski M, Szadujkis-Szadurski L, Grzes'k G, Szadujkis-Szadurski R, Szadujkis-Szadurska K, Wlodarczyk Z, Masztalerz M, Piotrowiak I, Jasiński M (2007) Guanylate cyclase activators influence reactivity of human mesenteric superior arteries retrieved and preserved in the same conditions as transplanted kidneys. Transplant Proc 39:1350–1353

    PubMed  CAS  Google Scholar 

  • Soleilhac JM, Lucas E, Beaumont A, Turcaud S, Michel JB, Ficheux D, Fournié-Zaluski MC, Roques BP (1992) A 94-kDa protein, identified as neutral endopeptidase-24.11, can inactivate atrial natriuretic peptide in the vascular endothelium. Mol Pharmacol 41:609–614

    PubMed  CAS  Google Scholar 

  • Stasch JP, Schmidt P, Alonso-Alija C, Apeler H, Dembowsky K, Haerter M, Heil M, Minuth T, Perzborn E, Pleiss U, Schramm M, Schroeder W, Schroder H, Stahl E, Steinke W, Wunder F (2002) NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br J Pharmacol 136:773–783

    PubMed  CAS  Google Scholar 

  • Stasch JP, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, H S AK, Meurer S, Deile M, Taye A, Knorr A, Lapp H, Müller H, Turgay Y, Rothkegel C, Tersteegen A, Kemp-Harper B, Müller-Esterl W, Schmidt HH (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116:2552–2561

    PubMed  CAS  Google Scholar 

  • Stephens NL (1987) Mechanical properties of vascular smooth muscle in hypertension. Clin Invest Med 10:536–542

    PubMed  CAS  Google Scholar 

  • Stingo AJ, Clavell AL, Heublein DM, Wei CM, Pittelkow MR, Burnett JC Jr (1992) Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 263:H1318–H1321

    PubMed  CAS  Google Scholar 

  • Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME (1999) Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science 286:1583–1587

    PubMed  CAS  Google Scholar 

  • Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512

    PubMed  CAS  Google Scholar 

  • Teixeira CE, Priviero FB, Webb RC (2006) Molecular mechanisms underlying rat mesenteric artery vasorelaxation induced by the nitric oxide-independent soluble guanylate cyclase stimulators BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl] pyrimidin-4-ylamine] and YC-1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzylIndazole]. J Pharmacol Exp Ther 317:258–266

    PubMed  CAS  Google Scholar 

  • Thengchaisri N, Kuo L (2003) Hydrogen peroxide induces endothelium-dependent and — independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol 285:H2255–H2263

    CAS  Google Scholar 

  • Thomsen LL (1997) Investigations into the role of nitric oxide and the large intracranial arteries in migraine headache. Cephalalgia 17:873–895

    PubMed  CAS  Google Scholar 

  • Villar IC, Panayiotou CM, Sheraz A, Madhani M, Scotland RS, Nobles M, Kemp-Harper B, Ahluwalia A, Hobbs AJ (2007) Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc Res 74:515–525

    PubMed  CAS  Google Scholar 

  • von der Leyen HE, Dzau VJ (2001) Therapeutic potential of nitric oxide synthase gene manipulation. Circulation 103:2760–2765

    PubMed  Google Scholar 

  • Wallis RM, Corbin JD, Francis SH, Ellis P (1999) Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 83:3C–12C

    PubMed  CAS  Google Scholar 

  • Walter U, Gambaryan S (2004) Roles of cGMP/cGMP-dependent protein kinase in platelet activation. Blood 104:2609

    PubMed  CAS  Google Scholar 

  • Wang R (1998) Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Can J Physiol Pharmacol 76:1–15

    PubMed  Google Scholar 

  • Wanstall JC, Homer KL, Doggrell SA (2005) Evidence for, and importance of, cGMP-independent mechanisms with NO and NO donors on blood vessels and platelets. Curr Vasc Pharmacol 3:41–53

    PubMed  CAS  Google Scholar 

  • Weber S, Bernhard D, Lukowski R, Weinmeister P, Worner R, Wegener JW, Valtcheva N, Feil S, Schlossmann J, Hofmann F, Feil R (2007) Rescue of cGMP kinase I knockout mice by smooth muscle specific expression of either isozyme. Circ Res 101:1096–1103

    PubMed  CAS  Google Scholar 

  • Wedel B, Garbers D (2001) The guanylyl cyclase family at Y2K. Annu Rev Physiol 63:215–233

    PubMed  CAS  Google Scholar 

  • Wedgwood S, Steinhorn RH, Bunderson M, Wilham J, Lakshminrusimha S, Brennan LA, Black SM (2005) Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn. Am J Physiol 289: L660–L666

    Article  CAS  Google Scholar 

  • Wei CM, Aarhus LL, Miller VM, Burnett JC (1993) Action of C-type natriuretic peptide in isolated canine arteries and veins. Am J Physiol 264:H71–H73

    PubMed  CAS  Google Scholar 

  • Wijeyaratne CN, Moult PJ (1993) The effect of alpha human atrial natriuretic peptide on plasma volume and vascular permeability in normotensive subjects. J Clin Endocrinol Metab 76: 343–346

    PubMed  CAS  Google Scholar 

  • Wolfsgruber W, Feil S, Brummer S, Kuppinger O, Hofmann F, Feil R (2003) A proatherogenic role for cGMP-dependent protein kinase in vascular smooth muscle cells. Proc Natl Acad Sci USA 100:13519–13524

    PubMed  CAS  Google Scholar 

  • Wong TY, Cheung N, Islam FM, Klein R, Criqui MH, Cotch MF, Carr JJ, Klein BE, Sharrett AR (2008) Relation of retinopathy to coronary artery calcification: the multi-ethnic study of atherosclerosis. Am J Epidemiol 167:51–58

    PubMed  Google Scholar 

  • Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, Haystead TA (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem. 279:34496–34504

    PubMed  CAS  Google Scholar 

  • Yamahara K, Itoh H, Chun TH, Ogawa Y, Yamashita J, Sawada N, Fukunaga Y, Sone M, Yurugi-Kobayashi T, Miyashita K, Tsujimoto H, Kook H, Feil R, Garbers DL, Hofmann F, Nakao K (2003) Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc Natl Acad Sci USA 100: 3404–3409

    PubMed  CAS  Google Scholar 

  • Zabel U, Kleinschnitz C, Oh P, Nedvetsky P, Smolenski A, Müller H, Kronich P, Kugler P, Walter U, Schnitzer JE, Schmidt HH (2002) Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide. Nat Cell Biol 4:307–311

    PubMed  CAS  Google Scholar 

  • Zhang J, Xia SL, Block ER, Patel JM (2002) NO upregulation of a cyclic nucleotide-gated channel contributes to calcium elevation in endothelial cells. Am J Physiol 283:C1080–C1089

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Kemp-Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Kemp-Harper, B., Schmidt, H.H.H.W. (2009). cGMP in the Vasculature. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_19

Download citation

Publish with us

Policies and ethics