Skip to main content

Novel Techniques for Real-Time Monitoring of cGMP in Living Cells

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

Recent developments of biophysical and electrophysiological techniques have enabled researchers to monitor levels of free intracellular cGMP in real-time and in intact living cells. These techniques are based on the use of cGMP sensors, which respond to cGMP with changes in transmembrane ion current or changes in fluorescence. Here, we describe the principles of these techniques, compare them in terms of sensitivity and discuss possible application for current cell biology and physiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold WP, Aldred R, Murad F (1977a) Cigarette smoke activates guanylate cyclase and increases guanosine 3′, 5′-monophosphate in tissues. Science 198:934–936

    Article  CAS  Google Scholar 

  • Arnold WP, Mittal CK, Katsuki S, Murad F (1977b) Nitric oxide activates guanylate cyclase and increases guanosine 3′ : 5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207

    Article  CAS  Google Scholar 

  • Arshavsky VY, Lamb TD, Pugh EN, Jr (2002) G proteins and phototransduction. Annu Rev Physiol 64:153–187

    Article  PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Biel M, Schneider A, Wahl C (2002) Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc Med 12:206–212

    Article  PubMed  CAS  Google Scholar 

  • Biswas KH, Sopory S, Visweswariah SS (2008) The GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5) is a sensor and a sink for cGMP. Biochemistry 47 (11):3534–3543

    Article  PubMed  CAS  Google Scholar 

  • Buechler WA, Nakane M, Murad F (1991) Expression of soluble guanylate cyclase activity requires both enzyme subunits. Biochem Biophys Res Commun 174:351–357

    Article  PubMed  CAS  Google Scholar 

  • Bünemann M, Frank M, Lohse MJ (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci USA 100:16077–16082

    Article  PubMed  Google Scholar 

  • Castro LR, Verde I, Cooper DM, Fischmeister R (2006) Cyclic guanosine monophosphate com-partmentation in rat cardiac myocytes. Circulation 113:2221–2228

    Article  PubMed  CAS  Google Scholar 

  • Cawley SM, Sawyer CL, Brunelle KF, van der Vliet A, Dostmann WR (2007) Nitric oxide-evoked transient kinetics of cyclic GMP in vascular smooth muscle cells. Cell Signal 19:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S (1989) A mem brane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  • Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68:375–401

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Hofmann F, Kleppisch T (2005) Function of cGMP-dependent protein kinases in the ner vous system. Rev Neurosci 16:23–41

    PubMed  CAS  Google Scholar 

  • Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828

    Article  PubMed  CAS  Google Scholar 

  • Friebe A, Mergia E, Dangel O, Lange A, Koesling D (2007) Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci USA 104:7699–7704

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  • Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  PubMed  CAS  Google Scholar 

  • Harteneck C, Koesling D, Soling A, Schultz G, Bohme E (1990) Expression of soluble guanylyl cyclase. Catalytic activity requires two enzyme subunits. FEBS Lett 272:221–223

    Article  PubMed  CAS  Google Scholar 

  • He X, Chow D, Martick MM, Garcia KC (2001) Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 293:1657–1662

    Article  CAS  Google Scholar 

  • Hein P, Frank M, Hoffmann C, Lohse MJ, Bünemann M (2005) Dynamics of receptor/G protein coupling in living cells. EMBO J 24:4106–4114

    Article  PubMed  CAS  Google Scholar 

  • Hepp R, Tricoire L, Hu E, Gervasi N, Paupardin-Tritsch D, Lambolez B, Vincent P (2007) Phos phodiesterase type 2 and the homeostasis of cyclic GMP in living thalamic neurons. J Neu-rochem 102:1875–1886

    CAS  Google Scholar 

  • Hoffmeister M, Riha P, Neumuller O, Danielewski O, Schultess J, Smolenski AP (2008) Cyclic nucleotide-dependent protein kinases inhibit binding of 14-3-3 to the GTPase-activating pro tein Rap1GAP2 in Platelets. J Biol Chem 283:2297–2306

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WR (2001) Spatiotemporal dynamics of guanosine 3′, 5′-cyclic monophosphate revealed by a genetically encoded, fluores cent indicator. Proc Natl Acad Sci USA 98:2437–2442

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Moosmeier MA, Dostmann WR (2005a) Membrane-permeable cygnets: rapid cellular internalization of fluorescent cGMP-indicators. Front Biosci 10:1290–1301

    Article  CAS  Google Scholar 

  • Honda A, Sawyer CL, Cawley SM, Dostmann WR (2005b) Cygnets: in vivo characterization of novel cGMP indicators and in vivo imaging of intracellular cGMP. Methods Mol Biol 307: 27–43

    CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  • Jain L, Chen XJ, Brown LA, Eaton DC (1998) Nitric oxide inhibits lung sodium transport through a cGMP-mediated inhibition of epithelial cation channels. Am J Physiol 274:L475–L484

    PubMed  CAS  Google Scholar 

  • Juilfs DM, Soderling S, Burns F, Beavo JA (1999) Cyclic GMP as substrate and regulator of cyclic nucleotide phosphodiesterases (PDEs). Rev Physiol Biochem Pharmacol 135:67–104

    Article  PubMed  CAS  Google Scholar 

  • Kamisaki Y, Saheki S, Nakane M, Palmieri JA, Kuno T, Chang BY, Waldman SA, Murad F (1986) Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem 261:7236–7241

    PubMed  CAS  Google Scholar 

  • Kass DA, Takimoto E, Nagayama T, Champion HC (2007) Phosphodiesterase regulation of nitric oxide signaling. Cardiovasc Res 75:303–314

    Article  PubMed  CAS  Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    PubMed  CAS  Google Scholar 

  • Krupinski J, Coussen F, Bakalyar HA, Tang WJ, Feinstein PG, Orth K, Slaughter C, Reed RR, Gilman AG (1989) Adenylyl cyclase amino acid sequence: possible channel- or transporter like structure. Science 244:1558–1564

    Article  PubMed  CAS  Google Scholar 

  • Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709

    Article  PubMed  CAS  Google Scholar 

  • Landa LR Jr, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW (2005) Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta -cell line. J Biol Chem 280:31294–31302

    Article  PubMed  CAS  Google Scholar 

  • Landgraf W, Hullin R, Gobel C, Hofmann F (1986) Phosphorylation of cGMP-dependent protein kinase increases the affinity for cyclic AMP. Eur J Biochem 154:113–117

    Article  PubMed  CAS  Google Scholar 

  • Leskov IB, Klenchin VA, Handy JW, Whitlock GG, Govardovskii VI, Bownds MD, Lamb TD, Pugh EN, Jr, Arshavsky VY (2000) The gain of rod phototransduction: reconciliation of bio chemical and electrophysiological measurements. Neuron 27:525–537

    Article  PubMed  CAS  Google Scholar 

  • Lincoln TM, Komalavilas P, Boerth NJ, MacMillan-Crow LA, Cornwell TL (1995) cGMP signal ing through cAMP- and cGMP-dependent protein kinases. Adv Pharmacol 34:305–322

    Article  PubMed  CAS  Google Scholar 

  • Lohse MJ, Bünemann M, Hoffmann C, Vilardaga JP, Nikolaev VO (2007) Monitoring receptor signaling by intramolecular FRET. Curr Opin Pharmacol 7:547–553

    Article  PubMed  CAS  Google Scholar 

  • Lohse MJ, Nikolaev VO, Hein P, Hoffmann C, Vilardaga JP, Bünemann M (2008) Optical tech niques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci 29:159–165

    PubMed  CAS  Google Scholar 

  • Ma L, Wang HY (2007) Mitogen-activated protein kinase p38 regulates the Wnt/cyclic GMP/Ca2+ non-canonical pathway. J Biol Chem 282:28980–28990

    Article  PubMed  CAS  Google Scholar 

  • Martinez SE, Wu AY, Glavas NA, Tang XB, Turley S, Hol WG, Beavo JA (2002) The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc Natl Acad Sci U S A 99:13260–13265

    Article  PubMed  CAS  Google Scholar 

  • Massberg S, Gruner S, Konrad I, Garcia Arguinzonis MI, Eigenthaler M, Hemler K, Kersting J, Schulz C, Muller I, Besta F, Nieswandt B, Heinzmann U, Walter U, Gawaz M (2004) En hanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)-deficient mice. Blood 103:136–142

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4:295–305

    Article  PubMed  CAS  Google Scholar 

  • Mongillo M, Evellin S, Lissandron V, Terrin A, Hannawacker A, Lohse MJ, Pozzan T, Houslay M, Zaccolo M (2004) FRET-based analysis of cAMP dynamics in live cells reveals distinct func tions of compartmentalized phosphodiesterases in cardiac myocytes. Circ Res 95:67–75

    Article  PubMed  CAS  Google Scholar 

  • Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD, Zaccolo M (2006) Compartmentalized phosphodiesterase-2 activity blunts β-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98:226–234

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98:3197–3202

    Article  PubMed  CAS  Google Scholar 

  • Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  PubMed  CAS  Google Scholar 

  • Nausch LW, Ledoux J, Bonev AD, Nelson MT, Dostmann WR (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci U S A 105:365–370

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev VO, Lohse MJ (2006) Monitoring of cAMP synthesis and degradation in living cells. Physiology (Bethesda) 21:86–92

    CAS  Google Scholar 

  • Nikolaev VO, Bünemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev VO, Gambaryan S, Engelhardt S, Walter U, Lohse MJ (2005) Real-time monitoring of the PDE2 activity of live cells: hormone-stimulated cAMP hydrolysis is faster than hormone-stimulated cAMP synthesis. J Biol Chem 280:1716–1719

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev VO, Bünemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006a) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching β1-adrenergic but locally confined β2-adrenergic receptor-mediated signaling. Circ Res 99:1084–1091

    Article  CAS  Google Scholar 

  • Nikolaev VO, Gambaryan S, Lohse MJ (2006b) Fluorescent sensors for rapid monitoring of intra-cellular cGMP. Nat Methods 3:23–25

    Article  CAS  Google Scholar 

  • Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A, Ruth P, Dostmann W, Sausbier M, Klatt P, Hofmann F (1999) Structure and function of cGMP-dependent protein kinases. Rev Physiol Biochem Pharmacol 135:105–149

    Article  PubMed  CAS  Google Scholar 

  • Pfleger KD, Eidne KA (2006) Illuminating insights into protein—protein interactions using biolu-minescence resonance energy transfer (BRET). Nat Methods 3:165–174

    Article  PubMed  CAS  Google Scholar 

  • Piggott LA, Hassell KA, Berkova Z, Morris AP, Silberbach M, Rich TC (2006) Natriuretic peptides and nitric oxide stimulate cGMP synthesis in different cellular compartments. J Gen Physiol 128:3–14

    Article  PubMed  CAS  Google Scholar 

  • Potter LR, Hunter T (2001) Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. J Biol Chem 276:6057–6060

    Article  PubMed  CAS  Google Scholar 

  • Pugh EN, Jr, Lamb TD (1993) Amplification and kinetics of the activation steps in phototransduc-tion. Biochim Biophys Acta 1141:111–149

    Article  PubMed  CAS  Google Scholar 

  • Pyriochou A, Papapetropoulos A (2005) Soluble guanylyl cyclase: more secrets revealed. Cell Signal 17:407–413

    Article  PubMed  CAS  Google Scholar 

  • Rich TC, Karpen JW (2002) Cyclic AMP sensors in living cells: what signals can they actually measure? Ann Biomed Eng 30:1088–1099

    Article  PubMed  Google Scholar 

  • Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116:147–161

    Article  PubMed  CAS  Google Scholar 

  • Rich TC, Tse TE, Rohan JG, Schaack J, Karpen JW (2001) In vivo assessment of local phos-phodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol 118:63–78

    Article  PubMed  CAS  Google Scholar 

  • Rochais F, Vandecasteele G, Lefebvre F, Lugnier C, Lum H, Mazet JL, Cooper DM, Fischmeister R (2004) Negative feedback exerted by cAMP-dependent protein kinase and cAMP phosphodi-esterase on subsarcolemmal cAMP signals in intact cardiac myocytes: an in vivo study using adenovirus-mediated expression of CNG channels. J Biol Chem 279:52095–52105

    Article  PubMed  CAS  Google Scholar 

  • Russwurm M, Koesling D (2004) NO activation of guanylyl cyclase. Embo J 23:4443–4450

    Article  PubMed  CAS  Google Scholar 

  • Russwurm M, Mullershausen F, Friebe A, Jager R, Russwurm C, Koesling D (2007) Design of fluorescence resonance energy transfer (FRET)-based cGMP indicators: a systematic approach. Biochem J 407:69–77

    Article  PubMed  CAS  Google Scholar 

  • Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res 93:280–291

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Hida N, Ozawa T, Umezawa Y (2000) Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Ialpha and green fluorescent proteins. Anal Chem 72:5918–5924

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Hida N, Umezawa Y (2005) Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells. Proc Natl Acad Sci U S A 102:14515–14520

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Nakajima T, Goto M, Umezawa Y (2006) Cell-based indicator to visualize picomolar dynamics of nitric oxide release from living cells. Anal Chem 78:8175–8182

    Article  PubMed  CAS  Google Scholar 

  • Sawyer CL, Honda A, Dostmann WR (2003) Cygnets: spatial and temporal analysis of intracellular cGMP. Proc West Pharmacol Soc 46:28–31

    PubMed  CAS  Google Scholar 

  • Schlossmann J, Hofmann F (2005) cGMP-dependent protein kinases in drug discovery. Drug Dis-cov Today 10:627–634

    Article  CAS  Google Scholar 

  • Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47: 819–846

    Article  PubMed  CAS  Google Scholar 

  • Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M, Mergia E, Montrose DC, Isoda T, Aufiero K, Zaccolo M, Dostmann WR, Smith CJ, Kass DA (2005) cGMP catabolism by phos phodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 96:100–109

    Article  PubMed  CAS  Google Scholar 

  • Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci USA 103:4753–4758

    Article  PubMed  CAS  Google Scholar 

  • Vilardaga JP, Bünemann M, Krasel C, Castro M, Lohse MJ (2003) Measurement of the millisecond activation switch of G-protein-coupled receptors in living cells. Nat Biotechnol 21:807–812

    Article  PubMed  CAS  Google Scholar 

  • Wunder F, Stasch JP, Hutter J, Alonso-Alija C, Huser J, Lohrmann E (2005a) A cell-based cGMP assay useful for ultra-high-throughput screening and identification of modulators of the nitric oxide/cGMP pathway. Anal Biochem 339:104–112

    Article  CAS  Google Scholar 

  • Wunder F, Tersteegen A, Rebmann A, Erb C, Fahrig T, Hendrix M (2005b) Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol Pharmacol 68:1775–1781

    CAS  Google Scholar 

  • Wunder F, Buehler G, Huser J, Mundt S, Bechem M, Kalthof B (2007) A cell-based nitric ox ide reporter assay useful for the identification and characterization of modulators of the nitric oxide/guanosine 3′, 5′-cyclic monophosphate pathway. Anal Biochem 363:219–227

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M (2004) Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res 94:866–873

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Nikolaev, V.O., Lohse, M.J. (2009). Novel Techniques for Real-Time Monitoring of cGMP in Living Cells. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_11

Download citation

Publish with us

Policies and ethics