Skip to main content

Physics Perspectives on the Role of 3D Imaging

  • Chapter
  • First Online:
Book cover Gynecologic Radiation Therapy

Abstract

To improve complication-free disease control, various sophisticated high-tech external beam therapy approaches have been proposed that allow delivering adequate doses to both tumor and areas of lymphatic drainage, while at the same improving sparing of the primary organs at risk rectum, bladder and bowel structures. These techniques are based on improved immobilization, the use of intensity modulation for both high energy photons and protons, and the use of image guidance for patient set-up verification. It is well known that the topography of the female pelvis shows substantial changes during time due to organ movement and tumor shrinkage, thus image guidance is mandatory when applying steep dose gradients to increasing conformity of external beam therapy plans. Although advanced external beam therapy techniques have challenged brachytherapy as a boost modality, image guidance with optimization has contributed to sustain brachytherapy as the golden standard as a boost technique. This chapter addresses the physics perspectives of intensity modulation, image guidance and the combination with advanced brachytherapy for the treatment of locally advanced cervix cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corn BW, Lanciano RM, Greven KM, et al. Impact of improve irradiation technique, age, and lymph node sampling on the severe complication rate of surgically staged endometrial cancer patients: A multivariate analysis. J Clin Oncol. 1994;12:510–5.

    PubMed  CAS  Google Scholar 

  2. Perez CA, Breaux S, Bedwinek JM, et al. Radiation therapy alone in the treatment of carcinoma of the uterine cervix Radiation therapy alone in the treatment of carcinoma of the uterine cervix. II. Analysis of complications. Cancer. 1984;54:235–46.

    Article  PubMed  CAS  Google Scholar 

  3. Adli M, Mayr NA, Kaiser HS, Skwarchuk MW, Meeks SL, Mardirossian G, et al. Does prone positioning reduce small bowel dose in pelvic radiation with intensity-modulated radiotherapy for gynecologic cancer? Int J Radiat Oncol Biol Phys. 2003;57(1):230–8.

    Article  PubMed  Google Scholar 

  4. Mell LK, Tiryaki H, Ahn KH, Mundt AJ, Roeske JC, Aydogan B. Dosimetric comparison of bone marrow-sparing intensity-modulated radiotherapy versus conventional techniques for treatment of cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(5):1504–10.

    Article  PubMed  Google Scholar 

  5. Weiss E, Vorwerk H, Richter S, Hess CF. Interfractional and intrafractional accuracy during radiotherapy of gynaecologic carcinomas: a comprehensive evaluation using the ExacTrac system. Int J Radiat Oncol Biol Phys. 2003;56(1):69–79.

    Article  PubMed  Google Scholar 

  6. Cozzi L, Dinshaw KA, Shrivastava SK, Mahantshetty U, Engineer R, Deshpande DD, et al. A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol. 2008;89(2):180–91.

    Article  PubMed  Google Scholar 

  7. Georg D, Georg P, Hillbrand M, Pötter R, Mock U. Assessment of improved organ at risk sparing for advanced cervix carcinoma utilizing precision radiotherapy techniques. Strahlenth Onkol. 2008;184(11):586–91.

    Article  Google Scholar 

  8. Georg P, Georg P, Georg D, Hillbrand M, Kirisits C, Pötter R. Factors influencing bowel sparing in intensity modulated whole pelvic radiotherapy for gynaecological malignancies. Radiother Oncol. 2006;80(1):19–26.

    Article  PubMed  Google Scholar 

  9. van de Bunt L, van der Heide UA, Ketelaars M, de Kort GA, Jürgenliemk-Schulz IM. Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: the impact of tumor regression. Int J Radiat Oncol Biol Phys. 2006;64(1):189–96.

    Article  PubMed  Google Scholar 

  10. Guerrero M, Li XA, Ma L, Linder J, Deyoung C, Erickson B. Simultaneous integrated intensity-modulated radiotherapy boost for locally advanced gynecological cancer: radiobiological and dosimetric considerations. Int J Radiat Oncol Biol Phys. 2005;62(3):933–9.

    Article  PubMed  Google Scholar 

  11. Mundt AJ, Lujan AE, Rotmensch J, et al. Intensity modulated whole pelvic radiotherapy in women with gynaecologic malignancies. Int J Rad Oncol Biol Phys. 2002;52:1330–7.

    Article  Google Scholar 

  12. Portelance L, Chao KS, Grigsby PW, Bennet H, Low D. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys. 2001;51(1):261–6.

    Article  PubMed  CAS  Google Scholar 

  13. Roeske JC, Lujan A, Rotmensch J, et al. Intensity modulated whole pelvic radiation therapy in patients with gynaecological malignancies. Int J Rad Oncol Biol Phys. 2000;48:1613–21.

    Article  CAS  Google Scholar 

  14. Roeske JC, Bonta D, Mell LK, et al. A dosimetric analysis of acute gastrointestinal toxicity in women receiving intensity modulated whole pelvic radiation therapy. Radioth Oncol. 2003;69:201–7.

    Article  Google Scholar 

  15. van de Bunt L, Jürgenliemk-Schulz IM, de Kort GA, Roesink JM, Tersteeg RJ, van der Heide UA. Motion and deformation of the target volumes during IMRT for cervical cancer: what margins do we need? Radiother Oncol. 2008;88(2):233–40.

    Article  PubMed  Google Scholar 

  16. Beadle BM, Jhingran A, Salehpour M, Sam M, Iyer RB, Eifel PJ. Cervix regression and motion during the course of external beam chemoradiation for cervical cancer. Int J Radiat Oncol Biol Phys. 2009;73:235–41.

    Article  PubMed  Google Scholar 

  17. Dimopoulos J, Schirl G, Baldinger A, Helbich T, Pötter R. MRI Assessment of Cervical Cancer for Adaptive Radiotherapy Strahlenth. Strahlenth Onkol. 2009;185:282–7.

    Article  Google Scholar 

  18. Kerkhof EM, Raaymakers BW, van der Heide UA, van de Bunt L, Jürgenliemk-Schulz IM, Lagendijk JJ. Online MRI guidance for healthy tissue sparing in patients with cervical cancer: an IMRT planning study. Radiother Oncol. 2008;88(2):241–9.

    Article  PubMed  Google Scholar 

  19. Wo J, Viswanathan AN. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int J Radiat Oncol Biol Phys. 2009;73(5):1304–12.

    Article  PubMed  Google Scholar 

  20. Haie-Meder C, Mlika-Cabanne N, Michel G, Briot E, Gerbaulet A, Lhomme C, et al. Radiotherapy after ovarian transposition: ovarian function and fertility preservation. Int J Radiat Oncol Biol Phys. 1993;25(3):419–24.

    Article  PubMed  CAS  Google Scholar 

  21. Kry SF, Salehpour M, Followill DS, Stovall M, Kuban DA, White RA, et al. Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;62(4):1204–16.

    Article  PubMed  Google Scholar 

  22. Olofsen-van Acht M, van den Berg H, Quint S, et al. Reduction of irradiated small bowel volume and accurate patient positioning by use of a bellyboard device in pelvic radiotherapy of gynecological cancer patients. Radioth Oncol. 2001;59:87–93.

    Article  CAS  Google Scholar 

  23. Liu Y, Shiau C-Y, Lee M-L, et al. The role and strategy of IMRT in radiotherapy of pelvic tumors: dose escalation and critical organ sparing in prostate cancer. Int J Radiat Oncol Biol Phys. 2007;67:1113–23.

    Article  PubMed  Google Scholar 

  24. Mock U, Dieckmann K, Wolff U, Pötter R. Portal Imaging based definition of the planning target volume during pelvic irradiation for gynecologic malignancies. Int J Rad Oncol Biol Phys. 1999;45:227–32.

    Article  CAS  Google Scholar 

  25. Stroom JC, Olofsen-van Acht MJ, Quint S, Seven M, de Hoog M, Creutzberg CL, et al. On-line set-up corrections during radiotherapy of patients with gynaecologic tumors. Int J Radiat Oncol Biol Phys. 2000;46(2):499–506.

    Article  PubMed  CAS  Google Scholar 

  26. White EA, Brock KK, Jaffray DA, Catton CN. Inter-observer variability of prostate delineation on cone beam computerised tomography images. Clin Oncol. 2009;21(1):32–8.

    Article  CAS  Google Scholar 

  27. Huh SJ, Park W, Han Y. Interfractional variation in position of the uterus during radical radiotherapy for cervical cancer. Radiother Oncol. 2004;71(1):73–9.

    Article  PubMed  Google Scholar 

  28. Taylor A, Powell ME. An assessment of interfractional uterine and cervical motion: implications for radiotherapy target volume definition in gynaecological cancer. Radiother Oncol. 2008;88(2):250–7.

    Article  PubMed  Google Scholar 

  29. Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, et al. MRI/linac integration. Radiother Oncol. 2008;86(1):25–9.

    Article  PubMed  Google Scholar 

  30. Aydogan B, Mundt AJ, Smith BD, et al. A dosimetric analysis of intensity-modulated radiation therapy (IMRT) as an alternative to adjuvant high-dose-rate (HDR) brachytherapy in early endometrial cancer patients. Int J Radiat Oncol Biol Phys. 2006;65:266–73.

    Article  PubMed  Google Scholar 

  31. Low DA, Grigsby PW, Dempsey JF, Mutic S, Williamson JF, Markman J, et al. Applicator-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2002;52(5):1400–6.

    Article  PubMed  Google Scholar 

  32. Molla M, Escude L, Nouet P, et al. Fractionated stereotactic radiotherapy boost for gynecologic tumors: an alternative to brachytherapy? Int J Radiat Oncol Biol Phys. 2005;62:118–24.

    Article  PubMed  Google Scholar 

  33. Wahab SH, Malyapa RS, Mutic S, et al. A treatment planning study comparing HDR and AGIMRT for cervical cancer. Med Phys. 2004;31:734–43.

    Article  PubMed  Google Scholar 

  34. Dimopoulos JC, Kirisits C, Petric P, Georg P, Lang S, Berger D, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: clinical feasibility and preliminary results. Int J Radiat Oncol Biol Phys. 2006;66(1):83–90.

    Article  PubMed  Google Scholar 

  35. Pötter R, Dimopoulos J, Georg P, Lang S, Waldhäusl C, Wachter-Gerstner N, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83(2):148–55.

    Article  PubMed  Google Scholar 

  36. Assenholt MS, Petersen JB, Nielsen SK, Lindegaard JC, Tanderup K. A dose planning study on applicator guided stereotactic IMRT boost in combination with 3D MRI based brachytherapy in locally advanced cervical cancer. Acta Oncol. 2008;47(7):1337–43.

    Article  PubMed  CAS  Google Scholar 

  37. Georg D, Kirisits Ch, Hillbrand M, Dimopoulos J, Pötter R. Image-guided radiotherapy for cervix cancer: high-tech external beam therapy vs. High-tech brachytherapy. Int J Rad Onc Biol Phys. 2008;71:1272–8.

    Article  Google Scholar 

  38. ICRU Report 50. Prescribing, recording, and reporting photon beam therapy. International Commission on Radiation Units and Meausrments, Bethesda.

    Google Scholar 

  39. Lang S, Kirisits C, Dimopoulos J, Georg D, Pötter R. Treatment planning for MRI assisted brachytherapy of gynecologic malignancies based on total dose constraints. Int J Radiat Oncol Biol Phys. 2007;69(2):619–27.

    Article  PubMed  Google Scholar 

  40. Kagei K, Tokuuye K, Okumura T, Ohara K, Shioyama Y, Sugahara S, et al. Long-term results of proton beam therapy for carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 2003;55(5):1265–71.

    Article  PubMed  Google Scholar 

  41. Kato S, Ohno T, Tsujii H, Nakano T, Mizoe JE, Kamada T, et al. Dose escalation study of carbon ion radiotherapy for locally advanced carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 2006;65(2):388–97.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Georg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Georg, D., Kirisits, C. (2011). Physics Perspectives on the Role of 3D Imaging. In: Viswanathan, A., Kirisits, C., Erickson, B., Pötter, R. (eds) Gynecologic Radiation Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68958-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68958-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68954-6

  • Online ISBN: 978-3-540-68958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics