Skip to main content

The Use of Positron Emission Tomographic Imaging for Image-Guided Therapy

  • Chapter
  • First Online:
Gynecologic Radiation Therapy

Abstract

FDG-PET is an important tool for cervical cancer radiation treatment planning, both for external irradiation and brachytherapy. The ability of FDG-PET to accurately define the primary cervical tumor volume and areas of lymph node metastasis greatly facilitates radiation treatment planning. The information provided by FDG-PET has the potential to change treatment field size and/or dose parameters for cervical cancer patients. FDG-PET brachytherapy planning uniquely demonstrates the three-dimensional relationship of the cervical tumor, adjacent organs, and treatment applicators, which could allow for treatment optimization. Besides demonstrating valuable anatomic information, FDG-PET also provides functional information which has been shown to have prognostic value and represents another aspect of how FDG-PET can influence cervical cancer radiation treatment planning. FDG-PET, already a routine imaging tool, is likely to play a larger role for cervical cancer and radiation therapy treatment planning in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor A, Powell ME. An assessment of interfractional uterine and cervical motion: Implications for radiotherapy target volume definition in gynecological cancer. Radiother Oncol. 2008;88:250–7.

    Article  PubMed  Google Scholar 

  2. Mayr NA, Yuh WT, Taoka T, et al. Serial therapy-induced changes in tumor shape in cervical cancer and their impact on assessing tumor volume and treatment response. AJR Am J Roentgenol. 2006;187:65–72.

    Article  PubMed  Google Scholar 

  3. Lim K, Chan P, Dinniwell R, et al. Cervical cancer regression measured using weekly magnetic resonance imaging during fractionated radiotherapy: radiobiologic modeling and correlation with tumor hypoxia. Int J Radiat Oncol Biol Phys. 2008;70:126–33.

    Article  PubMed  Google Scholar 

  4. Weiss E, Hess CF. The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy theoretical aspects and practical experiences. Strahlenther Onkol. 2003;179:21–30.

    Article  PubMed  Google Scholar 

  5. Caldwell CB, Mah K, Ung YC, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys. 2001;51:923–31.

    Article  PubMed  CAS  Google Scholar 

  6. Fox JL, Rengan R, O’Meara W, et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys. 2005;62:70–5.

    Article  PubMed  Google Scholar 

  7. Steenbakkers RJ, Duppen JC, Fitton I, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys. 2006;64:435–48.

    Article  PubMed  Google Scholar 

  8. Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53:353–9.

    Article  PubMed  Google Scholar 

  9. Grigsby PW. PET and PET/CT in Cervical and Uterine Cancer. In: Wahl RL, Beanlands RSB, editors. Principles and Practices of PET and PET/CT. 2nd ed. Philadelphia: Lippincott; 2008. p. 348–54.

    Google Scholar 

  10. Showalter TN, Miller TR, Huettner P et al. 18F-fluorodeoxyglucose-positron emission tomography and pathologic tumor size in early-stage invasive cervical cancer. Int J Gynecol Cancer. 2009 Nov; 19:1412-4.

    Google Scholar 

  11. Guha C, Alfieri A, Blaufox MD, et al. Tumor biology-guided radiotherapy treatment planning: gross tumor volume versus functional tumor volume. Semin Nucl Med. 2008;38:105–13.

    Article  PubMed  Google Scholar 

  12. Choi HJ, Roh JW, Seo SS, et al. Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer. 2006;106:914–22.

    Article  PubMed  Google Scholar 

  13. Grigsby PW, Dehdashti F, Siegel BA. FDG-PET evaluation of carcinoma of the cervix. Clinical Positron Imaging. 1999;2:105–9.

    Article  PubMed  Google Scholar 

  14. Narayan K, Hicks RJ, Jobling T, et al. A comparison of MRI and PET scanning in surgically staged loco-regional advanced cervical cancer: potential impact on treatment. Int J Gynecol Canc. 2001;11:263–71.

    Article  CAS  Google Scholar 

  15. Rose PG, Adler LP, Rodriguez M, et al. Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol. 1999;17:41–5.

    PubMed  CAS  Google Scholar 

  16. Sironi S, Buda A, Picchio M, et al. Lymph node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT. Radiology. 2006;238:272–9.

    Article  PubMed  Google Scholar 

  17. Bellomi M, Bonomo G, Landoni F, et al. Accuracy of computed tomography and magnetic resonance imaging in the detection of lymph node involvement in cervix carcinoma. Eur Radiol. 2005;15:2469–74.

    Article  PubMed  Google Scholar 

  18. Grigsby PW, Siegel BA, Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol. 2001;19:3745–9.

    PubMed  CAS  Google Scholar 

  19. Esthappan J, Mutic S, Malyapa RS, et al. Treatment planning guidelines regarding the use of CT/PET-guided IMRT for cervical carcinoma with positive paraaortic lymph nodes. Int J Radiat Oncol Biol Phys. 2004;58:1289–97.

    Article  PubMed  Google Scholar 

  20. Esthappan J, Chaudhari S, Santanam L, et al. Prospective clinical trial of positron emission tomography/computed tomography image-guided intensity-modulated radiation therapy for cervical carcinoma with positive para-aortic lymph nodes. Int J Radiat Oncol Biol Phys. 2008;72:1134–9.

    Article  PubMed  Google Scholar 

  21. Mutic S, Malyapa RS, Grigsby PW, et al. PET-guided IMRT for cervical carcinoma with positive para-aortic lymph nodes-a dose-escalation treatment planning study. Int J Radiat Oncol Biol Phys. 2003;55:28–35.

    Article  PubMed  Google Scholar 

  22. Grigsby PW, Singh AK, Siegel BA, et al. Lymph node control in cervical cancer. Int J Radiat Oncol Biol Phys. 2004;59:706–12.

    Article  PubMed  Google Scholar 

  23. Macdonald DM, Lin LL, Biehl K, et al. Combined intensity-modulated radiation therapy and brachytherapy in the treatment of cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:618–24.

    Article  PubMed  Google Scholar 

  24. Mutic S, Dempsey JF, Bosch WR, et al. Multimodality image registration quality assurance for conformal three-dimensional treatment planning. Int J Radiat Oncol Biol Phys. 2001;51:255–60.

    Article  PubMed  CAS  Google Scholar 

  25. Black QC, Grills IS, Kestin LL, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys. 2004;60:1272–82.

    Article  PubMed  Google Scholar 

  26. Daisne JF, Duprez T, Weynand B, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology. 2004;233:93–100.

    Article  PubMed  Google Scholar 

  27. Davis JB, Reiner B, Huser M, et al. Assessment of 18F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol. 2006;80:43–50.

    Article  PubMed  CAS  Google Scholar 

  28. Nestle U, Kremp S, Schaefer-Schuler A, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med. 2005;46:1342–8.

    PubMed  Google Scholar 

  29. Malyapa RS, Mutic S, Low DA, et al. Physiologic FDG-PET three-dimensional brachytherapy treatment planning for cervical cancer. Int J Radiat Oncol Biol Phys. 2002;54:1140–6.

    Article  PubMed  Google Scholar 

  30. Lin LL, Mutic S, Low DA, et al. Adaptive brachytherapy treatment planning for cervical cancer using FDG-PET. Int J Radiat Oncol Biol Phys. 2007;67:91–6.

    Article  PubMed  Google Scholar 

  31. Lin LL, Mutic S, Malyapa RS, et al. Sequential FDG-PET brachytherapy treatment planning in carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2005;63:1494–501.

    Article  PubMed  Google Scholar 

  32. Kidd EA, Siegel BA, Dehdashti F, et al. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer. 2007;110:1738–44.

    Article  PubMed  Google Scholar 

  33. Berghmans T, Dusart M, Paesmans M, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol. 2008;3:6–12.

    Article  PubMed  Google Scholar 

  34. Kidd EA, Grigsby PW. Intratumoral Metabolic Heterogeneity of Cervical Cancer. Clin Cancer Res. 2008;14:5236–41.

    Article  PubMed  CAS  Google Scholar 

  35. Grigsby PW, Malyapa RS, Higashikubo R, et al. Comparison of molecular markers of hypoxia and imaging with (60)Cu-ATSM in cancer of the uterine cervix. Mol Imaging Biol. 2007;9:278–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Kidd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Kidd, E., Grigsby, P. (2011). The Use of Positron Emission Tomographic Imaging for Image-Guided Therapy. In: Viswanathan, A., Kirisits, C., Erickson, B., Pötter, R. (eds) Gynecologic Radiation Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68958-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68958-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68954-6

  • Online ISBN: 978-3-540-68958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics