Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 63))

  • 2786 Accesses

Agriculture is reaching a new era. While in the past, breeding was based on phenotypes, future breeding will be based on knowledge of the genotype. Therefore, the future of agriculture is written into the genome. What conventional breeding cannot achieve is to separate and combine one or a select few genes with the rest of the genes, because during crossing all genes of one parent are transmitted, even those that could neutralize the benefit of another one. But how would one identify single genes of interest and their regulatory components within the total gene pool? Recent estimates are that the maize genome contains between 42,000 and 56,000 genes (Haberer et al. 2005). To identify a gene of interest could be like finding a needle in a haystack. While it has been possible to clone genes based on their gene products or their function, they only represent a tiny portion of the entire gene set. To obtain knowledge about all genes in the genome requires first that we know their structures and position in the genome.

The first genome of a flowering plant that was sequenced was Arabidopsis thaliana, mainly because it has one of the smallest genomes (Arabidopsis Genome Initiative, 2000). Furthermore, it was assumed that the C-value paradox teaches that the complexity of a multicellular organism was not proportional to the size of its genome (Thomas 1971). In other words, the smaller genome could serve as a reference gene set for the larger ones. However, many of the most important crop plants on earth belong to the monocotyledons, and Arabidopsis belongs to the dicotyledons. Indeed, it became clear that the sequence of the Arabidopsis genome is too distant to serve as a reference to monocot crop species. On the other hand, unique genes of the Poaceae, a monocot family, also known as the grasses, are conserved across these species to a degree that they could be used as heterologous probes to detect homologous gene sequences. Therefore, cross-hybridization of genetically mapped gene sequences made it possible to examine syntenic relationships among Poaceae (Hulbert et al. 1990; Whitkus et al. 1992; Ahn and Tanksley 1993). Because this family includes the cereals, it became possible to align entire chromosomal segments of the most important crops regardless of the sizes of their genomes (Moore et al. 1995; Gale and Devos 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot (Lond) 95:45–90

    Article  CAS  Google Scholar 

  • Bennetzen JL, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z (1998) Grass genomes. Proc Natl Acad Sci USA 95:1975–1978

    Article  PubMed  CAS  Google Scholar 

  • Bruggmann R, Bharti AK, Gundlach H, Lai J, Young S, Pontaroli AC, Wei F, Haberer G, Fuks G, Du C, Raymond C, Estep MC, Liu R, Bennetzen JL, Chan AP, Rabinowicz PD, Quackenbush J, Barbazuk WB, Wing RA, Birren B, Nusbaum C, Rounsley S, Mayer KF, Messing J (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Res 16:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci USA 101:700–707

    Article  PubMed  CAS  Google Scholar 

  • Clausius R (1868) On the mechanical theory of heat. Philos Mag 40:122

    Google Scholar 

  • Du C, Swigonova Z, Messing J (2006) Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 6:62

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, Nusbaum C, Mayer KF, Messing J (2005) Structure and architecture of the maize genome. Plant Physiol 139:1612–1624

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, Hilton PB, Antonio BA, Aono H, Apweiler R, Bruskiewich R, Bureau T, Burr F, Costa de Oliveira A, Fuks G, Habara T, Haberer G, Han B, Harada E, Hiraki AT, Hirochika H, Hoen D, Hokari H, Hosokawa S, Hsing Y, Ikawa H, Ikeo K, Imanishi T, Ito Y, Jaiswal P, Kanno M, Kawahara Y, Kawamura T, Kawashima H, Khurana JP, Kikuchi S, Komatsu S, Koyanagi KO, Kubooka H, Lieberherr D, Lin YC, Lonsdale D, Matsumoto T, Matsuya A, McCombie WR, Messing J, Miyao A, Mulder N, Nagamura Y, Nam J, Namiki N, Numa H, Nurimoto S, O'Donovan C, Ohyanagi H, Okido T, Oota S, Osato N, Palmer LE, Quetier F, Raghuvanshi S, Saichi N, Sakai H, Sakai Y, Sakata K, Sakurai T, Sato F, Sato Y, Schoof H, Seki M, Shibata M, Shimizu Y, Shinozaki K, Shinso Y, Singh NK, Smith-White B, Takeda J, Tanino M, Tatusova T, Thongjuea S, Todokoro F, Tsugane M, Tyagi AK, Vanavichit A, Wang A, Wing RA, Yamaguchi K, Yamamoto M, Yamamoto N, Yu Y, Zhang H, Zhao Q, Higo K, Burr B, Gojobori T, Sasaki T (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183

    Article  PubMed  Google Scholar 

  • Jaenicke-Despres V, Buckler ES, Smith BD, Gilbert MT, Cooper A, Doebley J, Paabo S (2003) Early allelic selection in maize as revealed by ancient DNA. Science 302:1206–1208

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–8719

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073

    Article  PubMed  CAS  Google Scholar 

  • Larson R, Messing J (1982) Apple II software for M13 shotgun DNA sequencing. Nucleic Acids Res 10:39–49

    Article  PubMed  CAS  Google Scholar 

  • Llaca V, Messing J (1998) Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. Plant J 15:211–220

    Article  PubMed  CAS  Google Scholar 

  • Lunde CF, Morrow DJ, Roy LM, Walbot V (2003) Progress in maize gene discovery: a project update. Funct Integr Genomics 3:25–32

    PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PD, Roh D, Pan X, Stein L, Freeling M, Alexander D, Martienssen R (2003) Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546

    Article  PubMed  CAS  Google Scholar 

  • McCarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J, Messing J, Koch KE, Hannah LC (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Dooner HK (2006) Organization and variability of the maize genome. Curr Opin Plant Biol 9:157–163

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Devos K, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Nelson WM, Bharti AK, Butler E, Wei F, Fuks G, Kim H-R, Wing RA, Messing J, Soderlund C (2005) Whole-genome validation of high-information-content fingerprinting. Plant Physiol 139:27–38

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23:305–308

    Article  PubMed  CAS  Google Scholar 

  • Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear hap-lotypes. Proc Natl Acad Sci USA 100:9055–9060

    Article  PubMed  CAS  Google Scholar 

  • Song R, Llaca V, Messing J (2002) Mosaic organization of orthologous sequences in grass genomes. Genome Res 12:1549–1555

    Article  PubMed  CAS  Google Scholar 

  • Stam M, Belele C, Ramakrishna W, Dorweiler JE, Bennetzen JL, Chandler VL (2002) The regulatory regions required for B' paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162:917–930

    PubMed  CAS  Google Scholar 

  • Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Swigonova Z, Bennetzen JL, Messing J (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169:891–906

    Article  PubMed  CAS  Google Scholar 

  • Thomas CA, Jr (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256

    Article  PubMed  CAS  Google Scholar 

  • Thuriaux P (1977) Is recombination confined to structural genes on the eukaryotic genome? Nature 268:460–462

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Wang Z, Pham N, Messing J (1994) Identification of a transcriptional activator-binding element in the 27-kilodalton zein promoter, the –300 element. Mol Cell Biol 14:4350–4359

    PubMed  CAS  Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA 94:7685–7690

    Article  PubMed  CAS  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Ueda T, Messing J (1998) Characterization of the maize prolamin box-binding factor-1 (PBF-1) and its role in the developmental regulation of the zein multigene family. Gene 223:321–332

    Article  PubMed  CAS  Google Scholar 

  • Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H, Schroeder S, Fang Z, McMullen M, Davis G, Bowers JE, Paterson AH, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing RA (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:e123

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, Lee Y, Zheng L, van Heeringen S, Karamycheva S, Bennetzen JL, SanMiguel P, Lakey N, Bedell J, Yuan Y, Budiman MA, Resnick A, Van Aken S, Utterback T, Riedmuller S, Williams M, Feldblyum T, Schubert K, Beachy R, Fraser CM, Quackenbush J (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120

    Article  PubMed  Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    PubMed  CAS  Google Scholar 

  • Wilson CM, Spraque GF, Nelsen TC (1989) Linkages among zein genes determined by isoelectric focusing. Theor Appl Genet 77:217–226

    Article  CAS  Google Scholar 

  • Xu JH, Messing J (2006) Maize haplotype with a helitron-amplified cytidine deaminase gene copy. BMC Genet 7:52

    Article  PubMed  CAS  Google Scholar 

  • Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH, Jr (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130: 1686–1696

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Messing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

Messing, J. (2009). The Structure of the Maize Genome. In: Kriz, A.L., Larkins, B.A. (eds) Molecular Genetic Approaches to Maize Improvement. Biotechnology in Agriculture and Forestry, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68922-5_15

Download citation

Publish with us

Policies and ethics