Skip to main content

Introduction to abelian varieties and the Mordell-Lang conjecture

  • Chapter
Model Theory and Algebraic Geometry

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1696))

Abstract

Our aim in this brief survey is to try and give an intuition about abelian varieties to model theorists, working mainly over the complex field. We then try to motivate the Lang conjecture, also called the Mordell-Lang conjecture, showing especially how it generalizes Mordell’s conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Abramovic and F. Voloch, Towards a proof of the Mordell-Lang conjecture in characteristic p, International Math. Research Notices 2, (1992), 103–115.

    Article  Google Scholar 

  2. C. Birkenhake and H. Lange, Complex abelian varieties, Springer, 1992.

    Google Scholar 

  3. J.B. Bost, Introduction to compact Riemann surfaces, jacobians and abelian varieties, in Number Theory and Physics, Springer, 1993.

    Google Scholar 

  4. E. Bouscaren, Proof of the Mordell-Lang conjecture for function fields, this volume.

    Google Scholar 

  5. A. Buium, Intersections in jet spaces and a conjecture of Serge Lang, Annals of Math. 136 (1992), 583–593.

    Article  MathSciNet  Google Scholar 

  6. A. Buium, Effective bounds for geometric Lang conjecture, Duke J. Math. 71 (1993), 475–499.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Cornell and J. Silverman (ed), Arithmetic Geometry, Springer, 1986.

    Google Scholar 

  8. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Inv. Math. 73 (1983), 349–366.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Faltings, Diophantine approximation on abelian varieties, Annals of Math. 133 (1991), 549–576.

    Article  MathSciNet  Google Scholar 

  10. G. Faltings, The general case of Lang’s conjecture, in Barsotti’s Symposium in Algebraic geometry, Acad. Press, 1994, 175–182.

    Google Scholar 

  11. M. Hindry, Autour d’une conjecture de Serge Lang, Inventiones Math. 94 (1988), 575–603.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Hindry, Sur les conjectures de Mordell et Lang (d’après Vojta, Faltings et Bombieri), Astérisque 209, 1992, 39–56.

    MathSciNet  Google Scholar 

  13. E. Hrushovski, The Mordell-Lang conjecture for function fields, J.AMS 9 (1996), 667–690.

    MATH  MathSciNet  Google Scholar 

  14. E. Hrushovski, Proof of Manin’s theorem by reduction to positive characteristic, this volume.

    Google Scholar 

  15. S. Lang, Introduction to algebraic Geometry, Interscience Tracts in pure and applied Mathematics, Interscience Publishers, New York, 1958.

    MATH  Google Scholar 

  16. S. Lang, Abelian varieties, Interscience, New York, 1959.

    Google Scholar 

  17. S. Lang, Integral points on curves, Publ. Math. IHES, 1960.

    Google Scholar 

  18. S. Lang, Division points on curves, Ann. Mat. Pura Appl. LXX (1965), 229–234.

    Google Scholar 

  19. S. Lang, Algebraic functions and abelian functions, Addison Wesley, 1972.

    Google Scholar 

  20. S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983.

    Google Scholar 

  21. S. Lang, Number Theory III: Diophantine Geometry, Encycopedia of Mathematical Sciences, Springer, 1991.

    Google Scholar 

  22. M. Laurent, Equations diophantiennes exponentielles, Inventiones Math. 78 (1984), 299–327.

    Article  MATH  MathSciNet  Google Scholar 

  23. Y. Manin, Rational points of algebraic curves over function fields, Isvetzia 27(1963), 1395–1440 (AMS Transl. Ser II 50 (1966), 189–234).

    MATH  MathSciNet  Google Scholar 

  24. R.C. Mason, Diophantine equations over function fields, London Math. Soc. L. N. 96, Cambridge U.P., 1984.

    Google Scholar 

  25. M. McQuillan, Division points on semi-abelian varieties, Inventiones Math. 120 (1995), 143–159.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. Mordell, On the rational solutions of the indeterminate equation of the 3rd and 4th degree, Math. Proc. Cambridge Philos. Soc. 21 (1922), 179–192.

    Google Scholar 

  27. D. Mumford, Abelian varieties, Oxford University Press, 1974.

    Google Scholar 

  28. A. Pillay, Model theory of algebraically closed fields, this volume.

    Google Scholar 

  29. A. Pillay, The model-theoretic content of Lang’s conjecture, this volume.

    Google Scholar 

  30. M. Raynaud, Courbes sur une variété abélienne et points de torsion, Inventiones Math. 71 (1983), 207–233.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Raynaud, Sous-variétés d’une variété abélienne et points de torsion, in Arithmetic and Geometry (dedicated to Shafarevich), Birkhäuser, 1983.

    Google Scholar 

  32. M. Raynaud, Around the Mordell conjecture for function fields and a conjecture of Serge Lang, in Algebraic Geometry, MLN 1016, Springer, 1983, 1–19.

    Google Scholar 

  33. J.P. Serre, Algebraic Groups and Class Fields, Springer, 1988.

    Google Scholar 

  34. I.R. Shafarevich, Basic Algebraic Geometry, Springer, 1977.

    Google Scholar 

  35. H. Swinnerton-Dyer, Introduction to the analytical theory of abelian varieties, London M.S. LN 14, Cambridge University Press, 1974.

    Google Scholar 

  36. P. Vojta, Siegel’s theorem in the compact case, Annals of Math. 133 (1991), 509–548.

    Article  MathSciNet  Google Scholar 

  37. P. Vojta, Integral points on subvarieties of semi-abelian varieties, Inventiones Math. 126 (1996), 133–181.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hindry, M. (1998). Introduction to abelian varieties and the Mordell-Lang conjecture. In: Bouscaren, E. (eds) Model Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol 1696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68521-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68521-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64863-5

  • Online ISBN: 978-3-540-68521-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics