Skip to main content

Imaging of the Postoperative Spine: Cages, Prostheses, and Instrumentation

  • Chapter
Spinal Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Spinal instrumentation has undergone tremendous evolution in the more than 125 years since the first reported internal fixation of the spine in 1888 by B. F. Wilkins, who reduced a dislocated T12-L1 vertebrae by fixing a wire with carbonized silver suture passed around the pedicles of the T12 and L1 vertebrae (Cotler 1999). In 1911 Albee and Hibbs, at two different institutions in New York, performed the first biological fusion procedures of the spine by using autogenous bone graft (Albee 1911; Hibbs 1911). Between these historical events, one of the most significant technological advances to impact the development of spinal instrumentation (and medicine in general) took place: William Roentgen’s discovery of X-ray imaging in 1895. Since these early events, the two landmark developments in spinal instrumentation of the past century were the interspinous wiring technique described by Rogers in the early 1940s and the rod/hook instrumentation system of Harrington for treatment of postpoliomyelitis scoliosis in the 1950s (Benzel 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albee FH (1911) Transplantation of a portion of the tibia for Potts disease. J Am Med Assoc 57:885–886

    Article  Google Scholar 

  • Albert TJ, An HS, Cotler JM, Balderston RA (1999) Harrington instrumentation and modifications. In: An HS, Cotler JM (eds) Spinal instrumentation, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, pp 305–316

    Google Scholar 

  • Alexander JT, Branch CL Jr, Subach BR, Haid RW (2002) Applications of a resorbable interbody spacer via a posterior lumbar interbody fusion technique. Orthopedics 25:1185–1189

    Google Scholar 

  • An HS, Simpson JM, Glover JM et al.(1995) Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine 20:2211–2216

    Article  PubMed  CAS  Google Scholar 

  • Bao QB (1996) The artificial disc: theory, design and materials. Biomaterials 17:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Benzel EC, Ball P (1994) History of spinal instrumentation. Neurosurgical topics: spinal instrumentation. American Association of Neurological Surgeons, Rolling Meadows, Illinois

    Google Scholar 

  • Blumenthal SL, Gill K (1993) Can lumbar spine radiographs accurately determine fusion in postoperative patients? Correlation of routine radiographs with a second surgical look at lumbar fusions. Spine 18:1186–1189

    Article  PubMed  CAS  Google Scholar 

  • Boleta MJ, Rechtine GR II, Chrin AM (2000) Three-and four-level anterior cervical discectomy and fusion with plate fixation: a prospective study. Spine 25:2040–2044

    Article  Google Scholar 

  • Brantigan JW, Neidre A (2003) Achievement of normal sagittal plane alignment using a wedged carbon fiber reinforced polymer fusion cage in treatment of spondylolisthesis. Spine J 3:186–196

    Article  PubMed  Google Scholar 

  • Burkus JK, Gornet MF, Dickman C, Zdeblick TA (2002a) Anterior interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337–349

    Article  PubMed  Google Scholar 

  • Burkus JK, Transfeldt E, Kitchel SH, Watkins R, Balderston R (2002b) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 27:2396–2408

    Article  PubMed  Google Scholar 

  • Cho DY, Liau WR, Lee WY et al.(2002) Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery 51:1343–1349

    PubMed  Google Scholar 

  • Cotler JM (1999) Historical events leading to spine surgery. In: An HS, Cotler JM (eds) Spinal instrumentation, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, pp 3–8

    Google Scholar 

  • Emery SE, Fisher JR, Bohlman HH (1997) Three-level anterior cervical discectomy and fusion: radiographic and clinical results. Spine 22:2622–2624

    Article  PubMed  CAS  Google Scholar 

  • Ghazi J, Golimbu CN, Engler G (1992) MRI of spinal fusion pseudarthrosis. J Comput Assist Tomogr 16:324–326

    Article  PubMed  CAS  Google Scholar 

  • Hannon KM, Wetta WJ (1977) Failure of technetium bone scanning to detect pseudarthrosis in spinal fusion for scoliosis. Clin Orthop 123:42–44

    PubMed  Google Scholar 

  • Harrington PR (1960) Surgical instrumentation for management of scoliosis. J Bone Joint Surg 42A:1448

    Google Scholar 

  • Harrington PR (1988) The history and development of Harrington instrumentation. Clin Orthop 227:3

    PubMed  CAS  Google Scholar 

  • Hibbs RA (1911) An operation for progressive spinal deformities. NY State J Med 93:1013–1016

    Google Scholar 

  • Jinkins JR, Van Goethem JW (2001) The postsurgical lumbosacral spine. Magnetic resonance imaging evaluation following intervertebral disk surgery, surgical decompression, intervertebral bony fusion, and spinal instrumentation. Radiol Clin North Am 39:1–29

    Article  PubMed  CAS  Google Scholar 

  • Kant AP, Daum WJ, Dean SM et al.(1995) Evaluation of lumbar spine fusion: plain radiographs versus direct surgical exploration and observation. Spine 20:2313–2317

    Article  PubMed  CAS  Google Scholar 

  • Krijnen MR, Smit TH, Strijkers GJ et al.(2004) The use of high-resolution magnetic resonance imaging for monitoring interbody fusion and bioabsorbable cages: an ex vivo pilot study. Neurosurg Focus 16, Article 3, pp 1–8

    Article  Google Scholar 

  • Kuklo TR, Rosner MK, Polly DW Jr (2004) Computerized tomography evaluation of a resorbable implant after trans-foraminal lumbar interbody fusion. Neurosurg Focus 16, Article 10, pp 1–6

    Article  Google Scholar 

  • Luque ER (1982) The anatomic basis and development of segmental spine instrumentation. Spine 7:256–259

    Article  PubMed  CAS  Google Scholar 

  • McMaster MJ, Merrick MV (1980) The scintigraphic assessment of the scoliotic spine after fusion. J Bone Joint Surg Br 62:65–72

    PubMed  Google Scholar 

  • Mutoh N, Shinomiya K, Furuya K et al.(1993) Pseudarthrosis and delayed union after anterior cervical fusion. Int Orthop 17:286–289

    Article  PubMed  CAS  Google Scholar 

  • Price CT, Connolly JF, Carantzas AC et al.(2003) Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine 28:793–798

    PubMed  Google Scholar 

  • Robbins MM, Vaccaro AR, Madigan L (2004) The use of bioabsorbable implants in spine surgery. Neurosurg Focus 16, Article 1, pp 1–7

    Article  Google Scholar 

  • Sandhu H (2004) Spinal fusion using bone morphogenetic proteins. Orthopedics 27:717–718

    PubMed  Google Scholar 

  • Salgado R, Van Goethem JW, van den Hauwe L, Parizel PM (2006) Imaging of the postoperative spine. Semin Roentgenol. 41:312–326

    Article  PubMed  CAS  Google Scholar 

  • Silcox DH III (1998) Laparoscopic bone dowel fusions of the lumbar spine. Orthop Clin N Am 29:655–663

    Article  Google Scholar 

  • Thometz JG, An HS (1999) Luque instrumentation with sublaminar wiring. In In: An HS, Cotler JM (eds) Spinal instrumentation, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, pp 317–326

    Google Scholar 

  • Turner JA, Ersek M, Herron L et al.(1992) Patient outcomes after lumbar spinal fusions. J Am Med Assoc 268:907–911

    Article  CAS  Google Scholar 

  • Van Goethem JW, Parizel PM, Jinkins JR (2002) Review article: MRI of the postoperative lumbar spine. Neuroradiology 44:723–739

    Article  PubMed  Google Scholar 

  • Wang MY, Kim KA, Liu CY, Kim P, Apuzzo ML (2004) Reliability of three-dimensional fluoroscopy for detecting pedicle screw violations in the thoracic and lumbar spine. Neurosurgery 54:1138–1142

    Article  PubMed  Google Scholar 

  • Wigfield CC, Robie BH (2004) Porous tantalum for spinal interbody fusion. In: Lewandrowski K, Wise D, Trantolo DJ et al. (eds) Advances in spinal fusion. Dekker, New York, pp 775–780

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, P.E., Zee, C.S. (2007). Imaging of the Postoperative Spine: Cages, Prostheses, and Instrumentation. In: Van Goethem, J.W.M., van den Hauwe, L., Parizel, P.M. (eds) Spinal Imaging. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68483-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68483-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21344-4

  • Online ISBN: 978-3-540-68483-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics