Skip to main content

Robust Shape Directions

  • Chapter
A Theory of Shape Identification

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1948))

  • 1109 Accesses

This chapter deals with shape affine normalization. This method associates with all shapes deduced from each other by an affine distortion a single normalized shape. A crucial ingredient for normalization is the computation of a small affine covariant set of robust straight lines associated with a shape. The set of all tangent lines to a shape has this covariance property, but it is too large. A very successful idea is to use bitangent lines, that is, lines tangent to a shape at two different points. If the shape has a finite number of inflexion points it also has a finite number of bitangent lines. In Sect. 3.3 a well-established curve affine invariant smoothing algorithm will be briefly described. This smoothing permits a drastic reduction of the number of bitangent lines. Yet, not all shapes can be encoded by using bitangents. Convex shapes have no bitangents and simple shapes have only a few. This explains why shape recognition algorithms compute other robust straight lines associated with the shape. Flat parts of curves are informally defined as intervals of the curve along which the direction of the tangent line does not vary too much. For instance, large enough polygons show as many reliable flat parts as sides. This chapter will present a simple parameterless definition of flat parts, based again on the Helmholtz principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Robust Shape Directions. In: A Theory of Shape Identification. Lecture Notes in Mathematics, vol 1948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68481-7_3

Download citation

Publish with us

Policies and ethics