Skip to main content

On Certain Graph Theory Applications

  • Chapter
Book cover Networks, Topology and Dynamics

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 613))

  • 2022 Accesses

Recent developments with regards to certain open problems in fullerenes and torusenes together with the methods used to solve these problems in a graph-theoretic context are presented. The stability of fullerenes and torusenes via the number of perfect matching and Hamiltonian cycles is considered in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldred REL, Bau S, Holton DA, McKay BD (2000) Nonhamiltonian 3-connected cubic planar graphs. SIAM J Discrete Math 13:25–32

    Article  Google Scholar 

  2. Bermond JC, Delorme C, Quisquater JJ (1985) Strategies for interconnection networks: some methods from graph theory. J Parallel Distrib Comput 3:433–449

    Article  Google Scholar 

  3. Boršnik U, Kutnar K, Marušič D, Janežič D (2008) Interconnection networks for parallel molecular dynamics based on hamiltonian cubic symmetric topology. J Math Chem, doi: 10.1007/s10910-008-9412-5 (in press)

    Google Scholar 

  4. Da Ross T, Prato M (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem Commun 8:663–669

    Article  Google Scholar 

  5. Deza M, Fowler PW, Rossat A, Rogers KM (2000) Fullerenes as tilings of surfaces. J Chem Inf Comput Sci 9:550–558

    Google Scholar 

  6. Diudea MV (2002) Topology of naphthylenic tori. Phys Chem Chem Phys 19:4740–4746

    Article  Google Scholar 

  7. Diudea MV, John PE, Graovac A, Primorac M, Pisanski T (2003) Leapfrog and related operations on toroidal fullerenes. Croat Chem Acta 76:153–159

    Google Scholar 

  8. Dobravec T, Robič B, Žerovnik J (2003) Permutation routing in double-loop networks: design and empirical evaluation. J Syst Arch 48:387–402

    Article  Google Scholar 

  9. Došlić T (2003) Cyclical connectvity of fullerene graphs and (k,6)-cages. J Math Chem 33:103–112

    Article  Google Scholar 

  10. Došlić T (2007) Fullerene graphs with exponentially many perfect matchings. J Math Chem 41:183–192

    Article  Google Scholar 

  11. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon, Oxford

    Google Scholar 

  12. Graovac A, Plavšić D, Kaufman M, Kirby EC, Pisanski T (2000) Application of the adjacency matrix eigenvectors method to geometry determination of toroidal carbon molecules. J Chem Phys 113:1925–1931

    Article  Google Scholar 

  13. Grönbaum B, Motzkin TS (1963) The number of hexagons and the simplicity of geodesics on certain polyhedra. Can J Math 15:744–751

    Google Scholar 

  14. Gutman I, Polansky O (1986) Mathematical concepts in organic chemistry. Springer, Berlin

    Google Scholar 

  15. Hodošček M, Borštnik U, Janežič D (2002) CROW for large scale macromolecular simulations. Cell Mol Biol Lett 7:118–119

    Google Scholar 

  16. Horiguchi S, Ooki T (2000) Hierarchical 3D-torus interconnection network. In: Proc. IEEE Intl Symp. on Parallel Architectures, Algorithms and Networks (ISPAN2000). IEEE CS Press: Richardson, TX, USA

    Google Scholar 

  17. John PE (1998) Kekulá count in toroidal hexagonal carbon cages. Croat Chem Acta 71:435–447

    Google Scholar 

  18. King RB, Diudea MV (2006) The chirality of icosahedral fullerenes: a comparison of the tripling (leapfrog), quadrupling (chamfering), and septupling (capra) trasformations. J Math Chem 93:567–604

    Google Scholar 

  19. Kratschmer W, Lamb L, Fostiropoulos K, Huffman D (1990) Solid C60: a new form of carbon Nature 347:354–358

    Article  Google Scholar 

  20. Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  21. Kutalek V, Dvorak V (2005) On complexity of collective communications on a fat cube topology. J Univ Comp Sci 11:944–961

    Google Scholar 

  22. Kutnar K, Malnič A, Marušič D (2005) Chirality of toroidal molecular graphs. J Chem Inf Model 45:1527–1535

    Article  Google Scholar 

  23. liu j, dai hj, hafner jh, colbert dt, smalley dtre, tans st, dekker c (1997) fullerene crop circles. nature 385:780–781

    Article  Google Scholar 

  24. Marušič D (2007) Hamilton cycles and paths in fullerenes. J Chem Inf Model 47:732–736

    Article  Google Scholar 

  25. Marušič D, Pisanski T (2000) Symmetries of hexagonal molecular graphs on the torus. Croat Chem Acta 73:969–981

    Google Scholar 

  26. Myrvold WJ (2006) Investigating conjectures about fullerenes. In: “Applications of graph theory to chemistry” minisymposium. 2006 SIAM Discrete Mathematics, June 25–28, 2006. University of Victoria, Canada

    Google Scholar 

  27. Payan C, Sakarovitch M (1975) Ensembles cycliquement stables et graphes cubiques. Cahiers du Centre D'etudes de Recherche Operationelle 17:319–343

    Google Scholar 

  28. Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, Geneste P, Bernier P, Ajayan PM (1994) Application of carbon nanotubes as supports in heterogenous catalysis. J Am Chem Soc 116:7935–7936

    Article  Google Scholar 

  29. Randić M (2003) Aromaticity of polycyclic conjugated hydrocarbons. Chem Rev 103: 3449–3606

    Article  Google Scholar 

  30. Thomassen C (1991) Tilinigs of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface. Trans Am Math Soc 323:605–635

    Article  Google Scholar 

  31. Trinajstić N (1992) Chemical graph theory. CRC, Boca Raton

    Google Scholar 

  32. Trobec R (2000) Two-dimensional regular d-meshes. Parallel Comput 26:1945–1953

    Article  Google Scholar 

  33. Tutte WT (1947) A family of cubical graphs. Proc Camb Phil Soc 43:459–474

    Article  Google Scholar 

  34. Voorhoeve M (1979) A lower bound for the permanents of certain (0;1)-matrices. Indaga-tiones Mathematicae 41:83–86

    Article  Google Scholar 

  35. Zhang H, Zhang F (2001) New lower bound on the number of perfect matchings in fullerene graphs. J Math Chem 30:343–347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kutnar, K., Marušič, D. (2009). On Certain Graph Theory Applications. In: Naimzada, A.K., Stefani, S., Torriero, A. (eds) Networks, Topology and Dynamics. Lecture Notes in Economics and Mathematical Systems, vol 613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68409-1_15

Download citation

Publish with us

Policies and ethics