Skip to main content

Optic Nerve: Atypical Nerves and Nerve Findings

  • Chapter
  • First Online:
Pearls of Glaucoma Management
  • 1303 Accesses

Abstract

It is now well recognized that structural changes in the head of the optic nerve often precede functional changes detected by perimetry. The evaluation of the optic disc has therefore become increasingly important in the diagnosis and management of glaucoma, with an emphasis on early detection of the disease. As it contains the neural fibers of the optic nerve, the appearance, contour and substance of the neural rim, and inversely the extent of the optic cup, generally hold the examiner’s primary attention. However, other manifestations of glaucomatous optic neuropathy may also be useful in the detection and monitoring of glaucoma. These include PPA.

Peripapillary atrophy refers to a white or pigmented crescent-shaped area adjacent to the head of the optic nerve. As its name suggests, it represents atrophy of pre-existing tissue, here the chorioretinal tissue overlying the peripapillary sclera- which is considered by many to be secondary to the glaucomatous process. The atrophy may be confined to a small area adjacent to the disc, often temporal, or inferior and temporal. It may also be extensive and surround the disc concentrically for some distance. In glaucoma patients, its extent may be correlated with the amount of nerve rim loss and field loss [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park KH, Tomita G, Liou SY, et al (1996) Correlation between peripapillary atrophy and optic nerve damage in normal-tension glaucoma. Ophthalmology 103(11): 1899–906.

    PubMed  CAS  Google Scholar 

  2. Jonas JB, Nguyen XN, Gusek GC, et al (1989) Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morpho­metric data. Invest Ophthalmol Vis Sci 30(5): 908–18.

    CAS  Google Scholar 

  3. Kubota T, Jonas JB, Naumann GO (1993) Direct clinico-histological correlation of parapapillary chorioretinal atrophy. Br J Ophthalmol 77(2): 103–6.

    Article  PubMed  CAS  Google Scholar 

  4. Jonas JB, Gusek GC, Fernandez MC (1991) Correlation of the blind spot size to the area of the optic disk and parapapillary atrophy. Am J Ophthalmol 111(5): 559–65.

    PubMed  CAS  Google Scholar 

  5. Jonas JB, Bergua A, Schmitz-Valckenberg P, et al (2000) Ranking of optic disc variables for detection of glaucomatous optic nerve damage. Invest Ophthalmol Vis Sci 41(7): 1764–73.

    PubMed  CAS  Google Scholar 

  6. Emdadi A, Kono Y, Sample PA, et al (1999) Parapapillary atrophy in patients with focal visual field loss. Am J Ophthalmol 128(5): 595–600.

    Article  PubMed  CAS  Google Scholar 

  7. Jonas JB, Martus P, Horn FK, et al (2004) Predictive factors of the optic nerve head for development or progression of glaucomatous visual field loss. Invest Ophthalmol Vis Sci 45(8): 2613–8.

    Article  PubMed  Google Scholar 

  8. Uchida H, Ugurlu S, Caprioli J (1998) Increasing peripapillary atrophy is associated with progressive ­glaucoma. Ophthal­mology 105(8): 1541–5.

    Article  CAS  Google Scholar 

  9. Apple DJ, Rabb MF, Walsh PM (1982) Congenital anomalies of the optic disc. Surv Ophthalmol 27(1): 3–41.

    Article  PubMed  CAS  Google Scholar 

  10. Grodum K, Heijl A, Bengtsson B (2001) Refractive error and glaucoma. Acta Ophthalmol Scand 79(6): 560–6.

    Article  PubMed  CAS  Google Scholar 

  11. Mitchell P, Hourihan F, Sandbach J, et al (1999) The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology 106(10): 2010–5.

    Article  PubMed  CAS  Google Scholar 

  12. Chihara E, Liu X, Dong J, et al (1997) Severe myopia as a risk factor for progressive visual field loss in primary open-angle glaucoma. Ophthalmologica 211(2): 66–71.

    Article  PubMed  CAS  Google Scholar 

  13. Curcio CA, Saunders PL, Younger PW, et al (2000) Peri­papillary chorioretinal atrophy: Bruch’s membrane changes and photoreceptor loss. Ophthalmology 107(2): 334–43.

    Article  PubMed  CAS  Google Scholar 

  14. Votruba M, Thiselton D, Bhattacharya SS (2003) Optic disc morphology of patients with OPA1 autosomal dominant optic atrophy. Br J Ophthalmol 87(1): 48–53.

    Article  PubMed  CAS  Google Scholar 

  15. Dorrell D (1978) The tilted disc. Br J Ophthalmol 62(1): 16–20.

    Article  PubMed  CAS  Google Scholar 

  16. Tong L, Saw SM, Chua WH, et al (2004) Optic disk and retinal characteristics in myopic children. Am J Ophthalmol 138(1): 160–2.

    Article  PubMed  Google Scholar 

  17. Giuffre G (1991) Chorioretinal degenerative changes in the tilted disc syndrome. Int Ophthalmol 15(1): 1–7.

    Article  PubMed  CAS  Google Scholar 

  18. Jonas JB, Kling F, Grundler AE (1997) Optic disc shape, corneal astigmatism, and amblyopia. Ophthalmology 104(11): 1934–7.

    Article  PubMed  CAS  Google Scholar 

  19. Vongphanit J, Mitchell P, Wang JJ (2002) Population prevalence of tilted optic disks and the relationship of this sign to refractive error. Am J Ophthalmol 133(5): 679–85.

    Article  PubMed  Google Scholar 

  20. Tong L, Chan YH, Gazzard G, et al (2007) Heidelberg retinal tomography of optic disc and nerve fiber layer in singapore children: variations with disc tilt and refractive error. Invest Ophthalmol Vis Sci 48(11): 4939–44.

    Article  PubMed  Google Scholar 

  21. Tay E, Seah SK, Chan SP, et al (2005) Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am J Ophthalmol 139(2): 247–52.

    Article  PubMed  Google Scholar 

  22. Vuori ML, Mantyjarvi M (2007) Tilted disc syndrome and colour vision. Acta Ophthalmol Scand 85(6): 648–52.

    Article  PubMed  Google Scholar 

  23. Saw SM, Tong L, Chua WH, et al (2005) Incidence and progression of myopia in Singaporean school children. Invest Ophthalmol Vis Sci 46(1): 51–7.

    Article  PubMed  Google Scholar 

  24. Vuori ML, Mantyjarvi M (2008) Tilted disc syndrome may mimic false visual field deterioration. Acta Ophthalmol Scand 86(6): 622–65.

    Article  Google Scholar 

  25. Brazitikos PD, Safran AB, Simona F, et al (1990) Threshold perimetry in tilted disc syndrome. Arch Ophthalmol 108(12): 1698–700.

    Article  PubMed  CAS  Google Scholar 

  26. Park KH, Caprioli J (2002) Development of a novel reference plane for the Heidelberg retina tomograph with optical coherence tomography measurements. J Glaucoma 11(5): 385–91.

    Article  PubMed  Google Scholar 

  27. Yamazaki Y, Yoshikawa K, Kunimatsu S, et al (1999) Influ­ence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph. Jpn J Ophthalmol 43(5): 392–7.

    Article  PubMed  CAS  Google Scholar 

  28. Yu S, Tanabe T, Hangai M, et al (2006) Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in tilted disk. Am J Ophthalmol 142(3): 475–82.

    Article  PubMed  Google Scholar 

  29. Doshi A, Kreidl KO, Lombardi L, et al (2007) Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males. Ophthalmology 114(3): 472–9.

    Article  PubMed  Google Scholar 

  30. Boyce SW, Platia EV, Green WR (1978) Drusen of the optic nerve head. Ann Ophthalmol 10(6): 695–704.

    PubMed  CAS  Google Scholar 

  31. Friedman AH, Beckerman B, Gold DH, et al (1977) Drusen of the optic disc. Surv Ophthalmol 21(5): 373–90.

    Article  PubMed  CAS  Google Scholar 

  32. Tso MO (1981) Pathology and pathogenesis of drusen of the optic nerve head. Ophthalmology 88(10): 1066–80.

    PubMed  CAS  Google Scholar 

  33. Auw-Haedrich C, Staubach F, Witschel H (2002) Optic disk drusen. Surv Ophthalmol 47(6): 515–32.

    Article  PubMed  Google Scholar 

  34. Mullie MA, Sanders MD (1985) Scleral canal size and optic nerve head drusen. Am J Ophthalmol 99(3): 356–9.

    PubMed  CAS  Google Scholar 

  35. Jonas JB, Gusek GC, Guggenmoos-Holzmann I, et al (1987) Optic nerve head drusen associated with abnormally small optic discs. Int Ophthalmol 11(2): 79–82.

    Article  PubMed  CAS  Google Scholar 

  36. Spencer WH (1978) Drusen of the optic disk and aberrant axoplasmic transport. The XXXIV Edward Jackson memorial lecture. Am J Ophthalmol 85(1): 1–12.

    PubMed  CAS  Google Scholar 

  37. Floyd MS, Katz BJ, Digre KB (2005) Measurement of the scleral canal using optical coherence tomography in patients with optic nerve drusen. Am J Ophthalmol 139(4): 664–9.

    Article  PubMed  Google Scholar 

  38. Spencer TS, Katz BJ, Weber SW, et al (2004) Progression from anomalous optic discs to visible optic disc drusen. J Neuroophthalmol 24(4): 297–8.

    Article  PubMed  Google Scholar 

  39. Sacks JG, O’Grady RB, Choromokos E, et al (1977) The pathogenesis of optic nerve drusen. A hypothesis. Arch Ophthal­mol 95(3): 425–8.

    Article  CAS  Google Scholar 

  40. Lorentzen SE (1966) Drusen of the optic disk. A clinical and genetic study. Acta Ophthalmol (Copenh) Suppl 90: 1–180.

    Google Scholar 

  41. Mustonen E (1983) Pseudopapilloedema with and without verified optic disc drusen. A clinical analysis II: visual fields. Acta Ophthalmol (Copenh) 61(6): 1057–66.

    Article  CAS  Google Scholar 

  42. Katz BJ, Pomeranz HD (2006) Visual field defects and retinal nerve fiber layer defects in eyes with buried optic nerve drusen. Am J Ophthalmol 141(2): 248–253.

    Article  PubMed  Google Scholar 

  43. Wilkins JM, Pomeranz HD (2004) Visual manifestations of visible and buried optic disc drusen. J Neuroophthalmol 24(2): 125–9.

    Article  PubMed  Google Scholar 

  44. Savino PJ, Glaser JS, Rosenberg MA (1979) A clinical analysis of pseudopapilledema. II. Visual field defects. Arch Ophthalmol 97(1): 71–5.

    Article  PubMed  CAS  Google Scholar 

  45. Cohen DN (1971) Drusen of the optic disc and the development of field defects. Arch Ophthalmol 85(2): 224–6.

    Article  PubMed  CAS  Google Scholar 

  46. Lansche RK, Rucker CW (1957) Progression of defects in visual fields produced by hyaline bodies in optic disks. AMA Arch Ophthalmol 58(1): 115–21.

    Article  PubMed  CAS  Google Scholar 

  47. Lee AG, Zimmerman MB (2005) The rate of visual field loss in optic nerve head drusen. Am J Ophthalmol 139(6): 1062–6.

    Article  PubMed  Google Scholar 

  48. Roh S, Noecker RJ, Schuman JS, et al (1998) Effect of optic nerve head drusen on nerve fiber layer thickness. Oph­thalmology 105(5): 878–85.

    Article  CAS  Google Scholar 

  49. Mistlberger A, Sitte S, Hommer A, et al (2001) Scanning laser polarimetry (SLP) for optic nerve head drusen. Int Ophthalmol 23(4–6): 233–7.

    Article  PubMed  CAS  Google Scholar 

  50. Tatlipinar S, Kadayifcilar S, Bozkurt B, et al (2001) Polarimetric nerve fiber analysis in patients with visible optic nerve head drusen. J Neuroophthalmol 21(4): 245–9.

    Article  PubMed  CAS  Google Scholar 

  51. Kurz-Levin MM, Landau K (1999) A comparison of imaging techniques for diagnosing drusen of the optic nerve head. Arch Ophthalmol 117(8): 1045–9.

    Article  PubMed  CAS  Google Scholar 

  52. Mustonen E, Kallanranta T, Toivakka E (1983) Neurological findings in patients with pseudopapilloedema with and without verified optic disc drusen. Acta Neurol Scand 68(4): 218–30.

    Article  PubMed  CAS  Google Scholar 

  53. Broman AT, Quigley HA, West SK, et al (2008) Estimating the rate of progressive visual field damage in those with ­open-angle glaucoma, from cross-sectional data. Invest Ophthalmol Vis Sci 49(1): 66–76.

    Article  PubMed  Google Scholar 

  54. Foster PJ, Buhrmann R, Quigley HA, et al (2002) The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 86(2): 238–42.

    Article  PubMed  Google Scholar 

  55. Araie M, Sekine M, Suzuki Y, et al (1994) Factors contributing to the progression of visual field damage in eyes with normal-tension glaucoma. Ophthalmology 101(8): 1440–4.

    PubMed  CAS  Google Scholar 

  56. Tezel G, Siegmund KD, Trinkaus K, et al (2001) Clinical factors associated with progression of glaucomatous optic disc damage in treated patients. Arch Ophthalmol 119(6): 813–8.

    Article  PubMed  CAS  Google Scholar 

  57. Gordon MO, Beiser JA, Brandt JD, et al (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6): 714–20; discussion 829–30.

    Article  PubMed  Google Scholar 

  58. Jonas JB, Zach FM, Gusek GC, et al (1989) Pseudoglaucomatous physiologic large cups. Am J Ophthalmol 107(2): 137–44.

    PubMed  CAS  Google Scholar 

  59. Lichter PR (1976) Variability of expert observers in evaluating the optic disc. Trans Am Ophthalmol Soc 74: 532–72.

    PubMed  CAS  Google Scholar 

  60. Carpel EF, Engstrom PF (1981) The normal cup-disk ratio. Am J Ophthalmol 91(5): 588–97.

    PubMed  CAS  Google Scholar 

  61. Varma R, Steinmann WC, Scott IU (1992) Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology 99(2): 215–21.

    PubMed  CAS  Google Scholar 

  62. Garway-Heath DF, Ruben ST, Viswanathan A, et al (1998) Vertical cup/disc ratio in relation to optic disc size: its value in the assessment of the glaucoma suspect. Br J Ophthalmol 82(10): 1118–24.

    Article  PubMed  CAS  Google Scholar 

  63. Healey PR, Mitchell P, Smith W, et al (1997) Relationship between cup-disc ratio and optic disc diameter: the Blue Moun­tains Eye Study. Aust N Z J Ophthalmol 25(Suppl 1): S99–101.

    Article  Google Scholar 

  64. Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 43(4): 293–320.

    Article  PubMed  CAS  Google Scholar 

  65. Varma R, Tielsch JM, Quigley HA, et al (1994) Race-, age-, gender-, and refractive error-related differences in the normal optic disc. Arch Ophthalmol 112(8): 1068–76.

    Article  PubMed  CAS  Google Scholar 

  66. Tielsch JM, Sommer A, Katz J, et al (1991) Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 266(3): 369–74.

    Article  PubMed  CAS  Google Scholar 

  67. Mason RP, Kosoko O, Wilson MR, et al (1989) National survey of the prevalence and risk factors of glaucoma in St. Lucia, West Indies. Part I. Prevalence findings. Ophthalmology 96(9): 1363–8.

    PubMed  CAS  Google Scholar 

  68. Mardin CY, Horn FK (1998) Influence of optic disc size on the sensitivity of the Heidelberg Retina Tomograph. Graefes Arch Clin Exp Ophthalmol 236(9): 641–5.

    Article  PubMed  CAS  Google Scholar 

  69. Funaki S, Shirakashi M, Abe H (1998) Relation between size of optic disc and thickness of retinal nerve fibre layer in normal subjects. Br J Ophthalmol 82(11): 1242–5.

    Article  PubMed  CAS  Google Scholar 

  70. Piette SD, Sergott RC (2006) Pathological optic-disc cupping. Curr Opin Ophthalmol 17(1): 1–6.

    Article  PubMed  Google Scholar 

  71. Trobe JD, Glaser JS, Cassady J, et al (1980) Nonglaucomatous excavation of the optic disc. Arch Ophthalmol 98(6): 1046–50.

    Article  PubMed  CAS  Google Scholar 

  72. Greenfield DS, Siatkowski RM, Glaser JS, et al (1998) The cupped disc. Who needs neuroimaging? Ophthalmology 105(10): 1866–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Edmunds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Edmunds, B., Morrison, J.C. (2010). Optic Nerve: Atypical Nerves and Nerve Findings. In: Giaconi, J., Law, S., Coleman, A., Caprioli, J. (eds) Pearls of Glaucoma Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68240-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68240-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68238-7

  • Online ISBN: 978-3-540-68240-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics