Skip to main content

Geodynamic Setting of the Tertiary Hocheifel Volcanism (Germany), Part I: 40Ar/39Ar geochronology

  • Chapter
Book cover Mantle Plumes

Abstract

The Eifel volcanism is part of the Cenozoic Central European Volcanic Province and is located close to the Rhine Graben which has been formed by rifting and subsidence since the Eocene. Whereas the Quaternary volcanism of the Eifel appears to be genetically related to mantle plume activity, the cause of the Tertiary volcanism of the Hocheifel volcanic field is less clear. Here, we present geochronological evidence for the geotectonic setting of the Tertiary Eifel volcanism based on 40Ar/39Ar dating of 27 samples from 25 volcanic occurrences. Included are samples from the northern Upper Rhine Graben in order to evaluate a possible relationship between Hocheifel volcanism and Rhine Graben taphrogenesis.

The geological relevance of the age data used for the geological discussion is indicated by plateau-type age spectra and tested by inverse isochron calculations. For the Hocheifel, two periods of activity at ca. 44 to 39 Ma and 37 to 35 Ma were inferred. Both age groups are represented by basanites as well as by more differentiated rocks and there is no clear relation between age and chemical composition. The time span dated for the northernmost Upper Rhine Graben volcanism is 59 to 47 Ma indicating foiditic to basanitic activity up to ca. 15 m.y. prior to the onset of rifting and subsidence.

The Hocheifel volcanic activity is interpreted to represent the propagation of the pre-rift volcanism of the northern Upper Rhine Graben to the NW because the Hocheifel activity closely follows in time pre-rifting northern Upper Rhine Graben volcanism and the older period of Hocheifel activity shows propagation of younger volcanism to the north. In addition, the Hocheifel tectonic pattern derived from the time - space relation of volcanism corresponds to stress field conditions identical to those of the Upper Rhine Graben at the time of Hocheifel volcanic activity. Magma generation therefore appears to be related to decompression by extension during Middle to Upper Eocene. However, in contrast to the northern Upper Rhine Graben with graben formation subsequent to pre-rifting volcanism, no relevant rifting or subsidence occurred in the Hocheifel. The taphrogenetic evolution in between the Upper and Lower Rhine Graben regions was suspended in an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berggren WA, Kent DV, Swisher CC, Aubry MP (1995) A revised geochronology and chronostratigraphy. In: Berggren WA et al (eds) Geochronology, time scales, and global stratigraphic correlation. SEPM special publication 54, pp 129–212

    Google Scholar 

  • Bogaard PJF, Wörner G (2003) Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. J Petrol 44:569–602

    Article  Google Scholar 

  • Cantarel P, Lippolt HJ (1977) Alter und Abfolge des Vulkanismus der Hocheifel. N Jb Geol Paläont Mh 10:600–612

    Google Scholar 

  • Fleck RJ, Sutter JF, Elliot DH (1977) Interpretation of discordant 40Ar/39Ar agespectra of Mesozoic tholeiites from Antarctica. Geochim Cosmochim Acta 41:15–32

    Article  Google Scholar 

  • Fuchs G (1974) Das Unterdevon am Ostrand der Eifeler Nordsüd-Zone. Beitr Naturkund Forsch Südwestdeutschl Beih 3:3–163

    Google Scholar 

  • Fuhrmann U, Lippolt HJ (1986) Excess argon and dating of Quaternary Eifel volcanism. II. Phonolithic and foiditic rocks near Rieden. N Jb Geol Paläont Abh 172(1):1–19

    Google Scholar 

  • Fuhrmann U, Lippolt HJ (1987) Excess argon and dating of Quaternary Eifel volcanism: III. Alkali basaltic rocks of the Central West Eifel/FR Germany. N Jb Geol Paläont Mh 4:213–236

    Google Scholar 

  • Hoernle K, Zhang YS, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39

    Article  Google Scholar 

  • Horn P, Lippolt HJ, Todt W (1972) Kalium-Argon-Alterbestimmungen an tertiären Vulkaniten des Oberrheingrabens I. Gesamtgesteinsalter. Eclog geol Helv 65(1):131–156

    Google Scholar 

  • Horn P, Müller-Sohnius D (1988) A differential etching and magnetic separation approach to whole-rock potassium-argon dating of basaltic rocks. Geochem J 22:115–128

    Google Scholar 

  • Huckenholz HG (1983) Tertiary volcanism of the Hocheifel area. In: Fuchs K, von Gehlen K, Mälzer H, Murawski H, Semmel A (eds) Plateau Uplift, The Rhenish Shield-A case history, Springer, Berlin etc, pp 121–128

    Google Scholar 

  • Huckenholz HG, Büchel G (1988) Tertiärer Vulkanismus der Hocheifel. Fortschr Miner 66:43–82

    Google Scholar 

  • Lippolt HJ (1982) K/Ar age determinations and the correlation of Tertiary volcanic activity in Central Europe. Geol Jb D52:113–135

    Google Scholar 

  • Lippolt HJ (1983) Distribution of volcanic activity in space and time. In: Fuchs K, von Gehlen K, Mälzer H, Murawski H, Semmel A (eds) Plateau Uplift, The Rhenish Shield-A case history, Springer, Berlin etc, pp 112–120

    Google Scholar 

  • Lippolt HJ, Fuhrmann U (1980) Vulkanismus der Nordeifel: Datierung von Gang-und Schlotbasalten. Aufschluß 31:540–547

    Google Scholar 

  • Lippolt HJ, Todt W (1978) Isotopische Alterbestimmungen an Vulkaniten des Westerwaldes. N Jb Geol Paläont Mh 6:332–352

    Google Scholar 

  • Lippolt HJ, Horn P, Todt W (1976) Kalium-Argon-Alter von Mineralien und Einschlüssen der Basalt-Vorkommen Katzenbuckel und Roßberg. N Jb Miner Abh 127(3):242–260

    Google Scholar 

  • Mertz DF, Swisher CC, Franzen JL, Neuffer FO, Lutz H (2000) Numerical dating of the Eckfeld maar fossil site, Eifel, Germany: a calibration mark for the Eocene time scale. Naturwiss. 87:270–274

    Article  Google Scholar 

  • Müller-Sohnius D (1993) Variation on a 36-Ma-old theme: length, intensity and rhythm of volcanism. A record from the Hocheifel (Germany). J Volc Geotherm Res 55:261–270

    Article  Google Scholar 

  • Müller-Sohnius D, Horn P, Huckenholz HG (1989) Kalium-Argon-Datierungen an tertiären Vulkaniten der Hocheifel. Chem Erde 49:119–136

    Google Scholar 

  • Negendank J (1969) Beschreibung einiger tertiärer Alkali-Basalte im nördlichen Oberrheingraben. Notizbl Hess Landesamt Bodenforsch 97:283–295

    Google Scholar 

  • Renne PR (1995) Excess 40Ar in biotite and hornblende from the Norils’k 1 intrusion: Implications for the age of the Siberian Traps. Earth Planet Sci Lett 131:165–176

    Article  Google Scholar 

  • Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainites in 40Ar/39Ar dating. Chem Geol 145:117–152

    Article  Google Scholar 

  • Ritter JRR, Jordan M, Christensen UR, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sci Lett 186:7–14

    Article  Google Scholar 

  • Rittmann U, Lippolt HJ (1998) Evidence for distortion of Tertiary K/Ar ages by excess argon-example given by three alkali olivine basalts from Nothern Hesse, Germany. Eur J. Mineral 10:95–110

    Google Scholar 

  • Schumacher ME (2002) Upper Rhine Graben: Role of preexisting structures during rift evolution. Tectonics 21(1):1–17

    Article  Google Scholar 

  • Sharp WD, Turrin BD, Renne PR, Lanphere MA (1996) 40Ar/39Ar and K/Ar dating of lavas from the Hilo 1-km core hole, Hawaii Scientific Drilling Project. J Geophys Res B101(5):11,607–11,616

    Google Scholar 

  • Sittler C (1969) The sedimentary trough of the Rhine Graben. Tectonophysics 8:543–560

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36:359–3692

    Article  Google Scholar 

  • Todt W, Lippolt HJ (1980) K-Ar age determinations on Tertiary volcanic rocks: V. Siebengebirge und Siebengebirgs-Graben. J Geophys 48:8–23

    Google Scholar 

  • Wilson M, Downes H (1991) Tertiary-Quaternary extension related alkaline magmatism in Western and Central Europe. J Petrol 32:811–849

    Google Scholar 

  • Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fekiacova, Z., Mertz, D.F., Renne, P.R. (2007). Geodynamic Setting of the Tertiary Hocheifel Volcanism (Germany), Part I: 40Ar/39Ar geochronology. In: Ritter, J.R.R., Christensen, U.R. (eds) Mantle Plumes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68046-8_6

Download citation

Publish with us

Policies and ethics