Skip to main content

Enantioselective and Isotope Analysis—Key Steps to Flavour Authentication

  • Chapter
Flavours and Fragrances

Abstract

Authentication of genuine flavours is an important topic in view of quality asssurance in the food industry and in consumer protection as well. Both isotope discrimination as well as enantioselectivity during biosynthesis may serve as inherent parameters of authenticity, provided that appropriate analytical methods and concise data from authentic samples are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schurig V, Novotny H-P (1988) Separation of enantiomers on diluted permethylated ß-cyclodextrin by high-resolution gas chromatography. J Chromatogr 441:155

    Article  CAS  Google Scholar 

  2. König WA, Lutz S, Mischnick-Lübbecke P, Brassat B, Wenz G (1988) Cyclodextrins as chiral stationary phases in capillary gas chromatography. I. Pentylated α-cyclodextrin. J Chromatogr 447:193

    Article  Google Scholar 

  3. König WA, Lutz S, Wenz G, van der Bey E (1988) Cyclodextrins as chiral stationary phases in capillary gas chromatography II. Heptakis(3-O-acetyl-2,6-di-O-pentyl)-β-cyclodextrin. J High Resolut Chromatogr Chromatogr Commun 11:506

    Article  Google Scholar 

  4. Armstrong DW, Chang C-D, Li WY (1990) Relevance of enantiomeric separation in food and beverage analyses. J Agric Food Chem 38:1674

    Article  CAS  Google Scholar 

  5. Dietrich A, Maas B, Karl V, Kreis P, Lehmann D, Weber B, Mosandl A (1992) Stereoisomeric flavor compounds, part LV: Stereodifferentiation of some chiral volatiles on heptakis(2,3-di-O-acetyl-6-O-tert-butyl-dimethylsilyl)-ß-cyclodextrin. J High Resolut Chromatogr 15:176

    Article  CAS  Google Scholar 

  6. Dietrich A, Maas B, Messer W, Bruche G, Karl V, Kaunzinger A, Mosandl A (1992), Stereoisomeric flavor compounds, part LVIII: The use of heptakis(2,3-di-O-methyl-6-O-tert-butyl-dimethylsilyl)-ß-cyclodextrin as a chiral stationary phase in flavor analysis. J High Resolut Chromatogr 15:590

    Article  CAS  Google Scholar 

  7. Saturin C, Tabacchi R, Saxer A (1993) Gas chromatographic analysis of racemic mixtures on peralkylated cyclodextrins. Chimia 47:221

    Google Scholar 

  8. Bicchi C, D’Amato A, Manzin V, Galli A, Galli M (1996) Cyclodextrin derivatives in gas chromatographic separation of racemic mixtures of volatile compounds. X. (2,3-di-O-ethyl-6-Otert-butyl-dimethylsilyl)-ß-and-γ-cyclodextrins. J Chromatogr A 742:161

    Article  CAS  Google Scholar 

  9. Takahisa E, Engel K-H (2005) 2,3-Di-O-methoxymethyl-6-O-tert-butyl-dimethylsilyl-γ-cyclodextrin: a new class of cyclodextrin derivatives for gas chromatographic separation of enantiomers. J Chromatogr A 1063:181

    Article  CAS  Google Scholar 

  10. Takahisa E, Engel K-H (2005) 2,3-Di-O-methoxymethyl-6-O-tert-butyldimethysilyl-β-cyclodextrin, a useful stationary phase for gas chromatographic separation of enantiomers. J Chromatogr A 1076:148

    CAS  Google Scholar 

  11. Kreis P, Dietrich A, Mosandl A (1996) Elution order of the furanoid linalool oxides on common gas chromatographic phases and modified cyclodextrin phases. J Essent Oil Res 8:339

    CAS  Google Scholar 

  12. Weinert B, Wüst M, Mosandl A Hanssum H (1998) Stereoisomeric flavour compounds LXXVIII. Separation and structure elucidation of the pyranoid linalool oxide stereoisomers using common gas chromatographic phases, modified cyclodextrin phases and nuclear magnetic resonance spectroscopy. Phytochem Anal 9:10

    Article  CAS  Google Scholar 

  13. Bayer M (2006) Entwicklung neuer Trennphasen und-methoden für die enantioselektive Chromotographie. Dissertation, University of Frankfurt

    Google Scholar 

  14. Mosandl A, Hener U, Fuchs S (2000) Natürliche Duft-und Aromastoffe—Echtheitsbewertung mittels enantioselektiver Kapillar-GC und/oder Isotopenmassenspektrometrie. In: Analytiker-Taschenbuch B 21. Springer, Berlin Heidelberg New York, p 37

    Google Scholar 

  15. Mosandl A, Hener U, Hagenauer-Hener U, Kustermann A (1989) Stereoisomeric flavor compounds XXXII: Direct enantiomer separation of chiral γ-lactones from food and beverages by multidimensional gas chromatography. J High Resolut Chromatogr 12:532

    Article  CAS  Google Scholar 

  16. Guichard E, Kustermann A, Mosandl A (1990) Chiral flavour compounds from apricots—distribution of γ-lactone enantiomers and stereodifferentiation of dihydroactinidiolide using multidimensional gas chromatography. J Chromatogr 498:396

    Article  CAS  Google Scholar 

  17. Mori K, Khlebnikov V (1993) Carotenoids and degraded carotenoids VIII: Synthesis of (+)-dihydroactinidiolide, (+)-and (-)-actinidiolide, (+)-and (-)-lololide as well as (+)-and (-)-epiloliolide. Liebigs Ann Chem 77

    Google Scholar 

  18. Yao S, Johannsen M, Hazell RA, Jörgensen KA (1998) Total synthesis of (R)-dihydroactinidiolide using asymmetric catalytic hetero-Diels-Alder methodology. J Org Chem 63:118

    Article  CAS  Google Scholar 

  19. Schmidt CO, Bouwmeester HJ, de Kraker J-W, König WA (1998) Biosynthese von (+) und (-) Germacren D in Solidago canadensis: Isolierung und Charakterisierung zweier enantioselektiver Germacren-D-Synthasen. Angew Chem 110:1479

    Article  Google Scholar 

  20. Schmidt CO, Bouwmeester HJ, Franke S, König WA (1999) Mechanisms of the biosynthesis of the sesquiterpene enantiomers (+) and (-) germacrene D in Solidago canadensis. Chirality 11:353

    Article  CAS  Google Scholar 

  21. Steliopoulos P (2002) Biogenesestudien und Authenzitätsbewertung mittels stabiler Isotope. Dissertation, University of Frankfurt

    Google Scholar 

  22. Mosandl A, Bruche G, Askari C, Schmarr H-G (1990) Steroisomeric flavor compounds XLIV: Enantioselective analysis of some important flavor molecules. J High Resolut Chromatogr 13:660

    Article  CAS  Google Scholar 

  23. Bruche G, Schmarr H-G, Bauer A, Mosandl A, Rapp A, Engel L (1991) Stereoisomere Aromastoffe LI: Stereodifferenzierung chiraler Furanone—Möglichkeiten und Grenzen der herkunftsspezifischen Aromastoff-Analyse. Z Lebensm Forsch 193:115

    Article  CAS  Google Scholar 

  24. Maga JA (1976 ) Lactones in Foods. Crit Rev Food Sci Nutr 8:1

    Article  CAS  Google Scholar 

  25. Schöttler M, Boland W (1996) Biosynthesis of dodecano-4-lactone in ripening fruits: Cruial role of an epoxide-hydrolase in enantioselective generation of aroma components of the nectarine (Prunus persica var. nucipersica) and the strawberry (Fragaria ananassa). Helv Chim Acta 79:1488

    Article  Google Scholar 

  26. Garbe L-A, Tressl R (2004) Metabolism of deuterated threo-dihydroxy fatty acids in Saccharomyces cerevisiae: Enantioselective formation and characterization of hydroxylactones and γ-lactones. Helv Chim Acta 87:180

    Article  CAS  Google Scholar 

  27. Lehmann D, Dietrich A, Schmidt S, Dietrich H, Mosandl A (1993) Stereodifferenzierung von γ(δ)-Lactonen und (E)-α-Ionon verschiedener Früchte und ihrer Verarbeitungsprodukte. Z Lebensm Unters Forsch 196:207

    Article  CAS  Google Scholar 

  28. Fenaroli G (1975) Fenaroli’s Handbook of Flavor Ingredients. CRC, Boca Raton, p 550

    Google Scholar 

  29. Opdyke DLJ (1975) Monographs on fragrance raw materials. γ-Nonalactone. Food and Cosmet Toxicol 13:889

    Article  Google Scholar 

  30. Opdyke DLJ (1975) Monographs on fragrance raw materials. γ-Undecalactone. Food and Cosmet Toxicol 13:921

    Article  Google Scholar 

  31. Wörner M, Pflaum M, Schreier P (1991) Additional volatile constituents of Artemisia vulgaris L. herb. Flavour Fragr J 6:257

    Article  Google Scholar 

  32. Ferreira V, Jarauta I, Ortega L, Cacho J (2004) Simple strategy for the optimization of solidphase extraction procedures through the use of solid-liquid distribution coefficients—application to the determination of aliphatic lactones in wine. J Chromatogr A 1025:147

    Article  CAS  Google Scholar 

  33. Rettinger K, Karl V, Schmarr HG, Dettmar F, Hener U, Mosandl A (1991) Chirospecific analysis of 2-alkylbranched alcohols,-acids, and-esters; chirality evaluation of 2-methylbutanoates from apples and pineapples. Phytochem Anal 2:184

    CAS  Google Scholar 

  34. Karl V, Rettinger K, Dietrich H, Mosandl A (1992) 2-Alkylverzweigte Aromastoffe—Struktur, Geruch und chirospezifische Analyse. Dtsch Lebensm Rundsch 88:147

    Google Scholar 

  35. Karl V (1994) Chirale Aromastoffe—Alkylverzweigte Säuren, Ester und Alkohole—Analyse und Reindarstellung der Enantiomeren. Dissertation, University of Frankfurt

    Google Scholar 

  36. Schumacher K, Asche S, Heil M, Mittelstädt F, Dietrich H, Mosandl A (1998) Methyl branched flavor compounds in fresh and processed apples. J Agric Food Chem. 46:4496

    Article  CAS  Google Scholar 

  37. Schumacher K (1999) Methoden zur Authentizitätskontrolle von Fruchtaromen. Dissertation, University of Frankfurt

    Google Scholar 

  38. Werkhoff P, Brennecke S, Bretschneider W, Güntert M, Hopp R, Surburg H (1993) Chirospecific analysis in essential oil, fragrance and flavor research. Z Lebensm Unters Forsch 196:307

    Article  CAS  Google Scholar 

  39. Dregus M, Schmarr H-G, Takahisa E, Engel K-H (2003) Enantioselective analysis of methylbranched alcohols and acids in rhubarb (Rheum rhabarbarum L.) stalks. J Agric Food Chem 51:7086

    Article  CAS  Google Scholar 

  40. Mosandl A, Rettinger K, Weber B, Henn D (1990) Untersuchungen zur Enantiomerenverteilung von 2-Methylbuttersäure in Früchten und anderen Lebensmitteln mittels multidimensionaler Gaschromatographie ( MDGC). Dtsch Lebensm Rundsch 86:375

    CAS  Google Scholar 

  41. Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737

    Article  CAS  Google Scholar 

  42. Pawliszyn J (ed) (1999) Application of the Solid Phase Microextraction. Royal Society of Chemistry: Cambridge

    Google Scholar 

  43. Bicchi C, Cordero C, Iori C, Rubiolo P, Sandra P (2000) Headspace sorptive extraction (HSSE) in the headspace analysis of aromatic and medicinal plants. J High Resol Chromatogr 23:539

    Article  CAS  Google Scholar 

  44. Kreck M, Scharrer A, Bilke S, Mosandl A (2001) Stir bar sorptive extraction (SBSE)—enantio-MDGC-MS, a rapid method for the enantioselective analysis of chiral flavour compounds in strawberries. Eur Food Res Technol 213:389

    Article  CAS  Google Scholar 

  45. Kreck M Scharrer A Bilke S Mosandl A (2002) Enantioselective analysis of monoterpene compounds in essential oils by stir bar sorptive extraction (SBSE)-enantio-MDGC-MS. Flavour Fragrance J 17:32

    Article  CAS  Google Scholar 

  46. Schmidt H-L, Gleixner G (1998) Isotopic patterns in natural compounds origin and importance in authenticity analysis. In: Schreier P, Herderich M, Humpf H-U, Schwab W (eds) Natural Product Analysis. Vieweg, Braunschweig, p 271

    Google Scholar 

  47. Martin GJ, Martin ML (1981) Deuterium labeling at the natural abundance level as studied by high field quantitative 2H NMR. Tetrahedron Lett 22:3525

    Article  CAS  Google Scholar 

  48. Schmidt H-L, Werner RA, Eisenreich W (2003) Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways. Phytochem Rev 2:61

    Article  CAS  Google Scholar 

  49. Schmidt H-L, Werner RA, Roßmann A (2001) 18O Pattern and biosynthesis of natural plant products. Phytochemistry 58:9

    Article  CAS  Google Scholar 

  50. Schmidt H-L, Eisenreich W (2001) Systematic and regularities in the origin of 2H patterns in natural compounds. Isotopes Environ Health Stud 37:253

    CAS  Google Scholar 

  51. Christoph N (2003) Possibilities and limitations of wine authentication using stable isotope and meteorological data, data banks and statistical tests. Part 1: Wines from Franconia and Lake Constance 1992 to 2001. Mitt. Klosterneuburg 53:23

    CAS  Google Scholar 

  52. Mosandl A (2004) Authenticity assessment—a permanent challenge in food flavor and essential oil analysis. J Chromatogr Sci 42:440

    CAS  Google Scholar 

  53. Mosandl A (2004) Authentizitätsbewertung von Aromastoffen mittels enantio-GC und Isotopen-MS. Mitt Lebensm Hyg 95:618

    CAS  Google Scholar 

  54. Juchelka D, Beck T, Hener U, Dettmar F, Mosandl A (1998) Multidimensional gas chromatography, online coupled with isotope ratio mass spectrometry (MDGC-IRMS): Progress in the analytical authentication of genuine flavor components. J High Resolut Chromatogr 21:145

    Article  CAS  Google Scholar 

  55. Hilkert AW, Douthitt CB, Schlüter HJ, Brand WA (1999) Isotope ratio monitoring gas chromatography/ mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 13:1226

    Article  CAS  Google Scholar 

  56. Bilke S, Mosandl A (2002) Authenticity assessment of lavender oil using GC-P-IRMS: 2H/1Hratios of linalool and linalyl acetate. Eur Food Res Technol 214:532

    Article  CAS  Google Scholar 

  57. Bilke S, Mosandl A (2002) 2H/1H-and 13C/12C isotope ratios of trans-anethole using gas chromatography — isotope ratio mass spectrometry. J Agric Food Chem 50:3935

    Article  CAS  Google Scholar 

  58. Preston C, Richling E, Elss S, Appel M, Heckel F, Hartlieb A, Schreier P (2003) On-line gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (HRGC-C/P-IRMS) of pineapple (Ananas comosus L. Merr.) volatiles. J Agric Food Chem 51:8027

    Article  CAS  Google Scholar 

  59. Fink K, Richling E, Heckel F, Schreier P (2004) Determination of 2H/1H and 13C/12C isotope ratios of (E)-methyl cinnamate from different sources using isotope ratio mass spectrometry. J Agric Food Chem 52:3065

    Article  CAS  Google Scholar 

  60. Kahle K, Preston C, Richling E, Heckel F, Schreier P (2005) On-line gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (HRGC-C/P-IRMS) of major volatiles from pear fruit (Pyrus communis) and pear products. Food Chem 91:449

    Article  CAS  Google Scholar 

  61. Tamura H, Appel M, Richling E, Schreier P (2005) Authenticity assessment of γ-and δ-decalactone from Prunus fruits by gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (GC-C/P-IRMS). J Agric Food Chem 53:5397

    Article  CAS  Google Scholar 

  62. Asche S, Beck T, Hener U, Mosandl A (2000) Multidimensional gas chromatography, online coupled with isotope ratio mass spectrometry (MDGC-IRMS): a new technique for analytical authentication of genuine flavour components. In: Frontiers of Flavour Science. DFA, Garching

    Google Scholar 

  63. David F, Sandra P (1987) Capillary Gas Chromatography in Essential Oil Analysis. Hüthig, Heidelberg

    Google Scholar 

  64. Bilke S, Mosandl A (2002) Measurements by gas chromatography/pyrolysis/mass spectrometry: fundamental conditions in 2H/1H isotope ratio analysis. Rapid Commun Mass Spectrom 16:468

    Article  CAS  Google Scholar 

  65. Braunsdorf R, Hener U, Lehmann D, Mosandl A (1991) Analytische Differenzierung zwischen natürlich gewachsenen, fermentativ erzeugten und synthetischen (naturidentischen) Aromastoffen I: Herkunftsspezifische Analyse des (E)-α(β)-Ionons. Dtsch Lebensm Rundsch 87:277

    CAS  Google Scholar 

  66. Werkhoff P, Bretschneider W, Güntert M, Hopp R, Surburg H (1991) Chirospecific analysis in flavor and essential oil chemistry. Part B. Direct enantiomer resolution of trans-α-ionone and trans-α-damascone by inclusion gas chromatography. Z Lebensm Unters Forsch 192:111

    Article  CAS  Google Scholar 

  67. Larsen M, Poll L (1990) Odour thresholds of some important aroma compounds in raspberries. Z Lebensm Unters Forsch 191:129

    Article  CAS  Google Scholar 

  68. Brenna E, Fuganti C, Serra S, Kraft P (2002) Optically active ionones and derivatives: preparation and olfactory properties. Eur J Org Chem 967

    Google Scholar 

  69. Juza M, Mazotti M, Morbidelli M (2000) Simulated moving-bed chromatography and its application to chirotechnology. Tibtech 18:108

    CAS  Google Scholar 

  70. Zenoni G, Quattrini F, Mazzotti M, Fuganti C, Morbidelli M (2002) Scale-up of analytical chromatography to the simulated moving bed separation of the enantiomers of the flavor norterpenoids α-ionone and α-damascone. Flavour Fragr J 17:195

    Article  CAS  Google Scholar 

  71. Sewenig S, Bullinger D, Hener U, Mosandl A (2005) Comprehensive authentication of (E)-α(β)-ionone from raspberries, using constant flow MDGC-C/P-IRMS and enantio-MDGC/ MS. J Agric Food Chem 53:838

    Article  CAS  Google Scholar 

  72. Roth l, Kormann K (1997) Duftpflanzen Pflanzendüfte. ecomed, Landsberg

    Google Scholar 

  73. European Pharmacopoeia Commission (2004) PA/PH/Exp. 13A/T (00) 40 DEF monograph no 1338

    Google Scholar 

  74. Bauer K, Garbe D, Surburg H (1990) Common Fragrance and Flavor Materials. VCH, Weinheim

    Google Scholar 

  75. Kreis P, Mosandl A (1992) Chiral compounds of essential oils XI: Simultaneous stereoanalysis of Lavandula oil constituents. Flavour Fragr J 7:187

    Article  CAS  Google Scholar 

  76. Hener U, Braunsdorf R, Kreis P, Dietrich A, Maas B, Euler E, Schlag B, Mosandl A (1992) Chiral compounds of essential oils X: The role of linalool in the origin evaluation of essential oils. Chem Mikrobiol Technol Lebensm 14:129

    CAS  Google Scholar 

  77. Schmidt H-L, Werner RA, Eisenreich W (2003) Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways. Phytochem Rev 2:61

    Article  CAS  Google Scholar 

  78. Culp RA, Noakes JE (1992) Determination of synthetic components in flavor by deuterium/hydrogen isotopic ratios. J Agric Food Chem 40:1892

    Article  CAS  Google Scholar 

  79. Hanneguelle S, Thibault J-N, Naulet N, Martin GJ (1992) Authentication of essential oils containing linalool and linalyl acetate by isotopic methods. J Agric Food Chem 40:81

    Article  CAS  Google Scholar 

  80. Hör K, Ruff C, Weckerle B, König T, Schreier P (2000) Flavor authenticity studies by 2H/1H ratio determination using on-line gas chromatography pyrolysis isotope ratio mass spectrometry. J Agric Food Chem 49:21

    Article  CAS  Google Scholar 

  81. Schmidt H-L, Rossmann A, Werner RA (1998) Flavourings. Wiley-VCH, Weinheim

    Google Scholar 

  82. Jung J, Sewenig S, Hener U, Mosandl A (2005) Comprehensive authenticity assessment of lavender oils using multielement/ multicomponent IRMS-analysis and enantioselective MDGCMS. Eur Food Res Technol 220:232

    Article  CAS  Google Scholar 

  83. Lebensmittelchemische Gesellschaft (2004) Authentizität von Aromastoffen. Lebensmittelchemie 58:54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mosandl, A. (2007). Enantioselective and Isotope Analysis—Key Steps to Flavour Authentication. In: Berger, R.G. (eds) Flavours and Fragrances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49339-6_17

Download citation

Publish with us

Policies and ethics