Skip to main content

Hypoxia-Mediated Chronic Normal Tissue Injury

A New Paradigm and Potential Strategies for Intervention

  • Chapter
Late Effects of Cancer Treatment on Normal Tissues

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The tolerance of normal tissues to irradiation remains the major limitation to the use of ionizing radiation in the treatment of many malignancies. Recent progress in understanding the mechanisms underlying the development of late injury following cancer treatment points toward chronic hypoxia and oxidative stress as an important contributor to this problem. In this chapter, the authors review the evidence to support this new paradigm of late normal tissue injury and discuss potential approaches to the prevention and treatment of this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anscher MS, Crocker IR, Jirtle RL (1990) Transforming growth factor-beta 1 expression in irradiated liver. Radiat Res 122:77–85

    Article  PubMed  CAS  Google Scholar 

  2. Arnold F, West D, Kumar S (1987) Wound healing: the effect of macrophage and tumour derived angiogenesis factors on skin graft vascularization. Br J Exp Pathol 68:569–574

    PubMed  CAS  Google Scholar 

  3. Barcellos-Hoff M, Dix T (1996) Redox-mediated activation of latent transforming growth factor-ßl. Mol Endocrinol 10:1077–1083

    Article  PubMed  CAS  Google Scholar 

  4. Barcellos-Hoff M (1998) How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat Res 150:S109–S120

    Article  PubMed  CAS  Google Scholar 

  5. Barcellos-Hoff MH, Brooks AL (2001) Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability. Radiat Res 156:618–627

    Article  PubMed  CAS  Google Scholar 

  6. Bellosta S, Bernini F, Ferri N et al (1998) Direct vascular effects of HMG-CoA reductase inhibitors. Atherosclerosis 137[Suppl]:101–109

    Article  Google Scholar 

  7. Bellosta S, Via D, Canavesi M et al (1998) HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 18:1671–1678

    PubMed  CAS  Google Scholar 

  8. Benson J, Poulsen H, Hougaard S et al (1998) TGFß and cancer in other organs. Lung cancer. In: Benson J (ed) TGFß and cancer. RG Landes Company, London, pp 155–158

    Google Scholar 

  9. Broekelmann TJ, Limper AH, Colby TV et al (1991) Transforming growth factor beta-1 is present at sites of extra-cellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci USA 88:6642–6646

    Article  PubMed  CAS  Google Scholar 

  10. Cadenas E, Boveris A, Ragan CI et al (1977) Production of Superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180:248–257

    Article  PubMed  CAS  Google Scholar 

  11. Castilla A, Prieto J, Fausto N (1991) Transforming growth factors beta-1 and alpha in chronic liver disease — effects of interferon alpha therapy. N Eng J Med 324:993–940

    Article  Google Scholar 

  12. Coleman SE, Duggan J, Hackett RL (1976) Plasma membrane changes in freeze-fractured rat kidney cortex following renal ischemia. Lab Invest 35:63–70

    PubMed  CAS  Google Scholar 

  13. Delanian S, Baillet F, Huart J et al (1994) Successful treatment of radiation-induced fibrosis using liposomal Cu/ Zn Superoxide dismutase: clinical trial. Radiother Oncol 32:12–20

    Article  PubMed  CAS  Google Scholar 

  14. Dent P, Yacoub A, Contessa J et al (2003) Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 159:283–300

    Article  PubMed  CAS  Google Scholar 

  15. Dorr W, Spekl K, Farrell CL (2002) Amelioration of acute oral mucositis by keratinocyte growth factor: fractionated irradiation. Int J Radiat Oncol Biol Phys 54:245–251

    Article  PubMed  CAS  Google Scholar 

  16. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  17. Elias JA, Gustilo K, Freundlich B (1988) Human alveolar macrophage and blood monocyte inhibition of fibroblast proliferation. Evidence for synergy between interleukin-1 and tumor necrosis factor. Am Rev Respir Dis 138:1595–1603

    PubMed  CAS  Google Scholar 

  18. Epperly MW, Defilippi S, Sikora C et al (2000) Intratracheal injection of manganese Superoxide dismutase (Mn-SOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther 7:1011–1018

    Article  PubMed  CAS  Google Scholar 

  19. Esser P, Heimann K, Wiedemann P (1993) Macrophages in proliferative vitreoretinopathy and proliferative diabetic retinopathy: differentiation of subpopulations. Br J Ophthalmol 77:731–733

    Article  PubMed  CAS  Google Scholar 

  20. Flanders KC, Sullivan CD, Fujii M et al (2002) Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 160:1057–1068

    PubMed  CAS  Google Scholar 

  21. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  22. Frater-Schroder M, Muller G, Birchmeier W et al (1986) Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun 137:295–302

    Article  PubMed  CAS  Google Scholar 

  23. Frater-Schroder M, Risau W, Hallmann R et al (1987) Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 84:5277–5281

    Article  PubMed  CAS  Google Scholar 

  24. Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxiamediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    Article  PubMed  CAS  Google Scholar 

  25. Hammes HP, Lin J, Bretzel RG et al (1998) Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat. Diabetes 47:401–406

    Article  PubMed  CAS  Google Scholar 

  26. Haroon ZA, Raleigh JA, Greenberg CS et al (2000) Early wound healing exhibits cytokine surge without evidence of hypoxia. Ann Surg 231:137–147

    Article  PubMed  CAS  Google Scholar 

  27. Hunt TK, Knighton DR, Thakral KK et al (1984) Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages. Surgery 96:48–54

    PubMed  CAS  Google Scholar 

  28. Johnston CJ, Williams JP, Okunieff P et al (2002) Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families. Radiat Res 157:256–265

    Article  PubMed  CAS  Google Scholar 

  29. Kang S, Rabbani Z, Folz R et al (2002) Overexpression of extracellular Superoxide dismutase protects mice from radiation induced lung injury. Int J Radiat Oncol Biol Phys 54:78

    Article  Google Scholar 

  30. Kinlay S, Selwyn AP, Delagrange D et al (1996) Biological mechanisms for the clinical success of lipid-lowering in coronary artery disease and the use of surrogate endpoints. Curr Opin Lipidol 7:389–397

    Article  PubMed  CAS  Google Scholar 

  31. Knighton DR, Hunt TK, Scheuenstuhl H et al (1983) Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221:1283–1285

    Article  PubMed  CAS  Google Scholar 

  32. Koch AE, Polverini PJ, Kunkel SL et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801

    Article  PubMed  CAS  Google Scholar 

  33. Komaki R, Lee JS, Milas L et al (2004) Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non-small-cell lung cancer: report of a randomized comparative trial. Int J Radiat Oncol Biol Phys 58:1369–1377

    Article  PubMed  CAS  Google Scholar 

  34. Li Y-Q, Ballinger J, Nordal R et al (2001) Hypoxia in radiation-induced blood-spinal cord barrier breakdown. Cancer Res 61:3348–3354

    PubMed  CAS  Google Scholar 

  35. Liguang C, LarrierN, Rabbani ZN et al (2003) Assessment of the protective effect of keratinocyte growth factor on radiation-induced pulmonary toxicity in rats. Int J Radiat Oncol Biol Phys 57:S162

    Google Scholar 

  36. Lyons RM, Gentry LE, Purchio AF et al (1990) Mechanism of activation of latent recombinant transforming growth factor ßl by plasmin. J Cell Biol 110:1361–1367

    Article  PubMed  CAS  Google Scholar 

  37. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  PubMed  CAS  Google Scholar 

  38. Matthews SJ, McCoy C (2003) Thalidomide: a review of approved and investigational uses. Clin Ther 25:342–395

    Article  PubMed  CAS  Google Scholar 

  39. Merchant J, Kim K, Mehta M et al (2000) Pilot and safety trial of Carboplatin, Paclitaxel, and Thalidomide in advanced non-small cell lung cancer. Clin Lung Cancer 2:48–52

    PubMed  CAS  Google Scholar 

  40. Minchenko A, Bauer T, Salceda S et al (1994) Hypoxic Stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 71:374–379

    PubMed  CAS  Google Scholar 

  41. Munger J, Huang X, Kawakatsu H et al (1999) The integrin vß6 binds and activates latent TGFßl: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328

    Article  PubMed  CAS  Google Scholar 

  42. Nakagami H, Jensen KS, Liao JK (2003) A novel pleiotropic effect of statins: prevention of cardiac hypertrophy by cholesterol-independent mechanisms. Ann Med 35:398–403

    Article  PubMed  CAS  Google Scholar 

  43. Nakanishi K, Tajima F, Nakamura A et al (1995) Effects of hypobaric hypoxia on antioxidant enzymes in rats. J Physiol 489:869–876

    PubMed  CAS  Google Scholar 

  44. Nishioka A, Ogawa Y, Mima T et al (2004) Histopathologic amelioration of fibroproliferative change in rat irradiated lung using soluble transforming growth factorbeta (TGF-beta) receptor mediated by adenoviral vector. Int J Radiat Oncol Biol Phys 58:1235–1241

    PubMed  CAS  Google Scholar 

  45. Patel B, Khaliq A, Jarvis-Evans J et al (1994) Oxygen regulation of TGF-beta 1 mRNA in human hepatoma (Hep G2) cells. Biochem Mol Biol Int 34:639–644

    PubMed  CAS  Google Scholar 

  46. Perez-Guerrero C, Alvarez de Sotomayor M, Jimenez L et al (2003) Effects of simvastatin on endothelial function after chronic inhibition of nitric oxide synthase by L-NAME. J Cardiovasc Pharmacol 42:204–210

    Article  PubMed  CAS  Google Scholar 

  47. Quinlan T, Spivack S, Mossman BT (1994) Regulation of antioxidant enzymes in lung after oxidant injury. Environ Health Perspect 102[Suppl]2:79–87

    Article  PubMed  CAS  Google Scholar 

  48. Rabbani ZN, Anscher MS, Zhang X et al (2003) Soluble TGFß type II receptor gene therapy ameliorates acute radiation-induced pulmonary injury in rats. Int J Radiat Biol Oncol Phys 57:563–572

    Article  CAS  Google Scholar 

  49. Rappolee DA, Mark D, Banda MJ et al (1988) Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping. Science 241:708–712

    Article  PubMed  CAS  Google Scholar 

  50. Remensnyder JP, Majno G (1968) Oxygen gradients in healing wounds. Am J Pathol 52:301–323

    PubMed  CAS  Google Scholar 

  51. Riley PA: Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33, 1994

    Article  PubMed  CAS  Google Scholar 

  52. Rubin P, Johnston CJ, Williams JP et al (1995) A perpetual cascade of cytokines post irradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33:99–109

    Article  PubMed  CAS  Google Scholar 

  53. Scannell G, Waxman K, Kami GJ et al (1993) Hypoxia induces a human macrophage cell line to release tumor necrosis factor-alpha and its soluble receptors in vitro. J Surg Res 54:281–285

    Article  PubMed  CAS  Google Scholar 

  54. Schieffer B, Luchtefeld M, Braun S et al (2000) Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 87:1195–1201

    PubMed  CAS  Google Scholar 

  55. Shi J, Wang J, Zheng H et al (2003) Statins increase thrombomodulin expression and function in human endothelial cells by a nitric oxide-dependent mechanism and counteract tumor necrosis factor alpha-induced thrombomodulin downregulation. Blood Coagul Fibrinolysis 14:575–585

    Article  PubMed  CAS  Google Scholar 

  56. Shweiki D, Itin A, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  PubMed  CAS  Google Scholar 

  57. Simanonok JP (1996) Non-ischemic hypoxia of the arterial wall is a primary cause of atherosclerosis. Med Hypotheses 46:155–161

    Article  PubMed  CAS  Google Scholar 

  58. Stone HB, Coleman CN, Anscher MS et al (2003) Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 4:529–536

    Article  PubMed  CAS  Google Scholar 

  59. Sun Y, Oberley LW (1996) Redox regulation of transcriptional activators. Free Radic Biol Med 21:335–348

    Article  PubMed  CAS  Google Scholar 

  60. Tsan MF (1997) Superoxide dismutase and pulmonary oxygen toxicity. Proc Soc Exp Biol Med 214:107–113

    PubMed  CAS  Google Scholar 

  61. Vaupel P, Schlenger K, Knoop C et al (1991) Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized 02 tension measurements. Cancer Res 51:3316–3322

    PubMed  CAS  Google Scholar 

  62. Vujaskovic Z, Anscher M, Feng Q-F et al (2001) Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 50:851–855

    Article  PubMed  CAS  Google Scholar 

  63. Vujaskovic Z, Batinic-Haberle I, Rabbani Z et al (2002) A small molecular weight catalytic metalloporphyrin antioxidant with Superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radie Biol Med 33:857

    Article  CAS  Google Scholar 

  64. Werner-Wasik M, Scott C, Movsas B et al (2003) Amifostine as a mucosal protectant in patients with locally advanced non-small cell lung cancer (NSCLC) receiving intensive chemotherapy and thoracic radiotherapy (RT): results of the Radiation Therapy Oncology Group (RTOG) 90-01 study. Int J Radiat Oncol Biol Phys 57:S216

    Google Scholar 

  65. Williams JP, Hernady E, Johnston CJ et al (2004) Effect of administration of lovastatin on the development of late pulmonary effects after whole-lung irradiation in a murine model. Radiat Res 161:560–567

    Article  PubMed  CAS  Google Scholar 

  66. Zheng H, Wang J, Koteliansky V, et al (2000) Recombinant soluble transforming growth factor ß type II receptor ameliorates radiation enteropathy in mice. Gastroenterology 119:1286–1296

    Article  PubMed  CAS  Google Scholar 

  67. Zhong Z, Arteel GE, Connor HD et al (1998) Cyclosporin A increases hypoxia and free radical production in rat kidneys: prevention by dietary glycine. Am J Physiol 275:595–604

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anscher, M.S., Vujaskovic, Z. (2008). Hypoxia-Mediated Chronic Normal Tissue Injury. In: Rubin, P., Constine, L.S., Marks, L.B., Okunieff, P. (eds) Late Effects of Cancer Treatment on Normal Tissues. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49070-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49070-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49069-2

  • Online ISBN: 978-3-540-49070-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics