Skip to main content

Normal Variations in Fossils and Recent Human Groups

  • Chapter
  • 1116 Accesses

Abstract

What is normality in terms of variation seen in fossil remains or the large skeletal samples excavated from sites of the last 10,000 years? There tends to be an assumption that we know what the boundaries of normality are, and thus “abnormality” presents no problems in terms of its differentiation. But this seems to be a matter for some debate, and intrapopulation studies on biological variation in skeletal and dental remains are by no means common. In particular, variation revealed by radiographic study is so far poorly reported in the literature. Moreover, it is probably true to say that variation in fossil humans has been especially neglected, and this applies to revealing and confirming pathology as well as establishing normal variation. A few examples will establish the ways in which x-rays could have assisted in extending our paleontological knowledge. Take for instance the East African skulls KNM-ER 406, KNM-ER 1470, and KNM-ER 1813 (Leakey et al. 1978), x-rays and computed tomography (CT) scans would have provided important extra information about cranial thickness, size and shape of frontal, maxillary, and mastoid sinuses, and perhaps even information on the basicranial angle and size and shape of the sella turcica. In the same way, xrays were needed to fully appreciate the morphology and degree of breakage and distortion of the Arago XXI skull (de Lumley 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acsádi G, Nemeskéri J (1970) History of Human Life Span and Mortality. Akadémiao Kiadó, Budapest

    Google Scholar 

  • Anderson T, Fell C (1995) Analysis of Roman cremation vessels by computerized tomography. J Archaeol Sci 22:609–617

    Article  Google Scholar 

  • Arambourg C (1963) Le gisement de Ternifine, II L'Atlanthropus mauritanicus. Arch L'Inst Paleo Humaine, Mem 32. Masson, Paris, pp 37–190

    Google Scholar 

  • Bang G (1989) Age changes in teeth: developmental and regressive. In: Iscan MY (ed) Age Markers in the Human Skeleton. Thomas, Springfield, pp 211–235

    Google Scholar 

  • Bell LS, Skinner MF, Jones SJ (1996) The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Sci Int 82:120–140

    Article  Google Scholar 

  • Black D (1929) Preliminary note on additional Sinanthropus material discovered in Choukoutien during 1928. Bull Geol Soc China 8:15–20

    Google Scholar 

  • Bowerman JW (1977) Radiology and Injury in Sport. Appleton- Century-Crowfts, New York

    Google Scholar 

  • Bridges PS, Blitz JH, Solano MC (2000) Changes in long bone diaphyseal strength with horticultural intensification in west-central Illinois. Am J Phys Anthropol 112:217–238

    Article  PubMed  CAS  Google Scholar 

  • Brothwell DR, Molleson T, Metreweli C (1968) Radiological aspects of normal variation in earlier skeletons: an exploratory study. In: Brothwell DR (ed) The Skeletal Biology of Earlier Human Populations. Pergamon, Oxford, pp 149–172

    Google Scholar 

  • Brown B, Walker A (1993) The dentition. In: Walker A, Leakey R (eds) The Nariokotome Homo erectus skeleton. Harvard University Press, Cambridge, pp 161–192

    Google Scholar 

  • Brown T (1973) Morphology of the Australian skull. Australian Aboriginal Studies No 49, Canberra

    Google Scholar 

  • Bruwelheide KS, Beck J, Pelot S (2001) Standardized protocol for radiographic and photographic documentation of human skeletons. In: Williams E (ed) Human Remains: Conservation, Retrieval and Analysis. BAR (International), Oxford, Ser 934, pp 153–165

    Google Scholar 

  • Buckland-Wright JC (1970) A radiographic examination of frontal sinuses in early British populations. Man 5:512– 517

    Article  Google Scholar 

  • Burrows H, Cave AJE, Parbury K (1943) A radiographical comparison of the pituitary fossa in male and female whites and negroes. Br J Radiol 16:87

    Article  Google Scholar 

  • Buxton LHD (1928) Human remains. In: Garrod DAE, Buxton LHD, Smith GE, Bate DMA (eds) Excavation of a Mousterian rock shelter at Devils Tower, Gibraltar. J Roy Anthrop Inst 58:57–85

    Google Scholar 

  • Capasso L, Kennedy KAR, Wilczak CA (1999) Atlas of Occupational Markers on Human Remains. Edigrafital SpA, Teramo

    Google Scholar 

  • Carlson DS, Armelagos GJ, Van Gerven DP (1976) Patterns of age-related cortical bone loss (osteoporosis) within the femoral diaphysis. Hum Biol 48:295–314

    PubMed  CAS  Google Scholar 

  • Conroy GC, Vannier MW (1985) Endocranial volume determination of matrix-filled fossil skulls using high-resolution computed tomography. In: Tobias PV (ed) Hominid Evolution: Past, Present and Future. Liss, New York, pp 419–426

    Google Scholar 

  • Cook DC, Buikstra JE, DeRousseau CJ, Johanson DC (1983) Vertebral pathology in the Afar Australopithecines. Am J Phys Anthropol 60:83–101

    Article  PubMed  CAS  Google Scholar 

  • Day MH, Molleson TI (1973) The Trinil femora. In: Day MD (ed) Human Evolution. Taylor and Francis, London, pp 127–154

    Google Scholar 

  • Eckhardt R B (2000) Human Paleobiology. University Press, Cambridge

    Google Scholar 

  • El-Nofely AA, Iscan MY (1989) Assessment of age from the dentition in children. In: Iscan MY (ed) Age markers in the human skeleton. Thomas, Springfield, pp 237–254

    Google Scholar 

  • Fairgrieve SI, Bashford J (1988) A radiographic technique of interest to physical anthropologists. Am J Phys Anthropol 77:23–26

    Article  PubMed  CAS  Google Scholar 

  • Feik SA, Bruns TW, Clement JG (2000) Regional variations in cortical modelling in the femoral mid-shaft: sex and age differences. Am J Phys Anthropol 112:191–205

    Article  PubMed  CAS  Google Scholar 

  • Gorjanović-Kramberger D (1906) Der diluviale Mensch von Krapina in Kroatien. Ein Beigrag zur Paläoanthropologie. Kreidel, Wiesbaden

    Google Scholar 

  • Gregg JB, Holzhueter AM, Steele JP, Clifford S (1965) Some new evidence on the pathogenesis of otosclerosis. Laryngoscope 75:1268–1292

    Article  PubMed  CAS  Google Scholar 

  • Hauser G, De Stefano GS (1989) Epigenetic Variants of the Human Skull. Schweizerbart, Stuttgart

    Google Scholar 

  • Horváth F (1980) X-ray morphology of occupational locomotor diseases. University Park Press, Baltimore

    Google Scholar 

  • Hutson MA (1990) Overuse injuries of the ankle and foot. In: Hutson MA (ed) Sports Injuries, Recognition and Management. University Press, Oxford, pp 152–162

    Google Scholar 

  • Jacob T (1967) The racial history of the Indonesian region. Neerlandia, Utrecht

    Google Scholar 

  • Kallay J (1963) A radiographic study of the Neanderthal teeth from Krapina, Croatia. In: Brothwell DR (ed) Dental Anthropology. Pergamon, London, pp 75–86

    Google Scholar 

  • Kisling E (1966) Cranial Morphology in Down's Syndrome. Munksgaard, Copenhagen

    Google Scholar 

  • von Koenigswald GHR (ed) (1958) Neanderthal Centenary 1856–1956. Zoon, Utrecht

    Google Scholar 

  • Koppe T, Nagai H (1999) Factors in the development of the paranasal sinuses. In: Koppe T, Nagai H, Alt KW (eds) The paranasal sinuses of higher primates. Quintessence, Chicago, pp 133–149

    Google Scholar 

  • Krogman WM (1962) The Human Skeleton in Forensic Medicine. Thomas, Springfield

    Google Scholar 

  • Larsen CS (1977) Bioarchaeology, Interpreting Behaviour from the Human Skeleton. University Press, Cambridge

    Google Scholar 

  • Leakey RE, Leakey MG, Behrensmeyer AK (1978) The hominid catalogue. In: Leakey MG, Leakey RE (eds) Koobi Fora Research Project. Clarendon, Oxford, pp 86–187

    Google Scholar 

  • Le Gros Clark WE (1964) General features of the Swanscombe skull bones. In: Ovey CD (ed) The Swanscombe Skull. A Survey of Research on a Pleistocene Site. Royal Anthropological Institute, London, pp 135–137

    Google Scholar 

  • Lumley M-A de (1981) Les anténéandertaliens en Europe. In: Sigmon BA, Cybulski JS (eds) Homo erectus, Papers in Honor of Davidson Black. University of Toronto Press, Toronto, pp 115–132

    Google Scholar 

  • Lumley-Woodyear M-A de (1973) Anténéandertaliens et néandertaliens du bassin méditerranéen occidental Européen. Études Quaternaires 3, Marseille

    Google Scholar 

  • Mays SA (2006) Age-related cortical bone loss in women from 3rd-4th century AD population from England. Am J Phys Anthropol 129:518–528

    Article  PubMed  CAS  Google Scholar 

  • Mays S, Turner-Walker G, Syversen U (2006) Osteoporosis in a population from medieval Norway. Am J Phys Anthropol 131:343–351

    Article  PubMed  CAS  Google Scholar 

  • Moss ML (1971) Ontogenetic aspects of cranio-facial growth. In: Moyers RE, Krogman WM (eds) Cranio-Facial Growth in Man. Pergamon, Oxford, pp 109–124

    Google Scholar 

  • Neubauer S, Gunz P, Mitteroecker P, Weber GW (2004) Threedimensional digital imaging of the partial Australopithecus africanus endocranium MLD 37–38. Can Assoc Radiol J 55:271–278

    PubMed  Google Scholar 

  • Pawson IG, Huicho L, Muro M, Pacheco A (2001) Growth of children in two economically diverse Peruvian high-altitude communities. Am J Hum Biol 13:323–340

    Article  PubMed  CAS  Google Scholar 

  • Perzigian AJ (1973) Osteoporotic bone loss in two prehistoric Indian populations. Am J Phys Anthropol 39:87–95

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Molleson TI (1974) A radiographic examination of the left temporal bone of Kabwe man, Broken Hill mine, Zambia. J Arch Sci 1:285–289

    Article  Google Scholar 

  • Radovčić J, Smith FH, Trinkaus E, Wolpoff MH (1988) The Krapina hominids. Croatian Natural History Museum, Zagreb

    Google Scholar 

  • Saunders E (1837) The teeth a test of age, considered with reference to the factory children. Renshaw, London

    Google Scholar 

  • Saunders SR, Popovich F (1978) A family study of two skeletal variants: atlas bridging and clinoid bridging. Am J Roent 49:193–203

    CAS  Google Scholar 

  • Schuster FP, Finnegan M (1977) Racial distance: a multivariate analysis of roentgengraphic measurements in Eskimos, Indians and Whites. HOMO 28:227–235

    Google Scholar 

  • Schüller A (1943) Note on the identification of skulls by X-ray pictures of the frontal sinuses. Med J Australia 1:554–556

    Google Scholar 

  • Seidler H, Falk D, Stringer C, Wilfing H, Müller GB, Nedden D, Weber GW, Reicheis W, Arsuaga J-L (1997) A comparative study of stereolithographically modelled skulls of

    Google Scholar 

  • Petralona and Broken Hill: implications for future studies of middle Pleistocene hominid evolution. J Hum Evol 33:691–703

    Google Scholar 

  • Singer R (1958) The Rhodesian, Florisbad and Saldanha skulls. In: von Koenigswald GHR (ed) Neanderthal Centenary 1856–1956. Zoom, Utrecht, pp 52–62

    Google Scholar 

  • Skinner MF, Sperber GH (1982) Atlas of radiographs of early man. Liss, New York

    Google Scholar 

  • Sorg MH, Andrews RP, Iscan MY (1989) Radiographic aging of the adult. In: Iscan MY (ed) Age Markers in the Human Skeleton. Thomas, Springfield, pp 169–173

    Google Scholar 

  • Spoor F, Hublin J-J, Braun M, Zonneveld F (2003) The bony labyrinth of Neanderthals. J Hum Evol 44:141–165

    Article  PubMed  Google Scholar 

  • Spoor F, Stringer C, Zonneveld F (1998) Rare temporal bone pathology of the Singa calvaria from Sudan. Am J Phys Anthropol 107:41–50

    Article  PubMed  CAS  Google Scholar 

  • Spoor F, Zonneveld F (1999) Computed tomography-based three-dimensional imaging of hominid fossils: features of the Broken Hill 1, Wadjak 1, and SK 47 crania. In: Koppe T, Nagai H, Alt KW (eds) The Paranasal Sinuses of Higher Primates. Quintessence Publishing, Chicago, pp 207–226

    Google Scholar 

  • Szilvássy J (1982) Zur variation, Entwicklung und Vererbung der Stirnhöhlen. Ann Naturhist Mus Wien 84:97–125

    Google Scholar 

  • Tanner JM (1964) The Physique of the Olympic Athlete. Allen and Unwin, London

    Google Scholar 

  • Thompson JL, Illerhaus B (2000) CT reconstruction and analysis of the Le Moustier 1 Neanderthal. In: Stringer CB, Barton RNE, Finlayson JC (eds) Neanderthals on the Edge. Oxbow, Oxford, pp 249–255

    Google Scholar 

  • Thorne AG (1971) Mungo and Kow Swamp: morphological variation in Pleistocene Australians. Mankind 8:85–91

    Article  Google Scholar 

  • Tobias PV (1968) The pattern of venous sinus grooves in the robust Australopithecines and other fossil and modern Hominids. In: Anthropologie und Humangenetik. Fischer, Stuttgart, pp 1–10

    Google Scholar 

  • Trinkaus E (1993) Femoral neck-shaft angles of the Qafzeh- Skhul early modern humans, and activity levels among immature Near Eastern middle paleolithic hominids. J Hum Evol 25:393–416

    Article  Google Scholar 

  • Ubelaker DH (1989) The estimation of age at death from immature human bone. In: Iscan M Y (ed) Age Markers in the Human Skeleton. Thomas, Springfield, pp 55–70

    Google Scholar 

  • Virtama P, Helelä T (1969) Radiographic measurements of cortical bone. Acta Radiol Supplement 293

    Google Scholar 

  • Vlček E (1967) Die sinus frontales bei europäischen Neandertalern. Anthrop Anz 30:166–189

    Google Scholar 

  • Walker RA, Lovejoy CO (1985) Radiographic changes in the clavicle and proximal femur and their use in determination of skeletal age at death. Am J Phys Anthropol 68:67–78

    Article  PubMed  CAS  Google Scholar 

  • Washburn SL, Howell FC (1952) On the identification of the hypophyseal fossa of Solo man. Am J Phys Anthropol 10:13

    Article  PubMed  CAS  Google Scholar 

  • Weidenreich F (1935) The Sinanthropus population of Choukoutien (locality 1) with a preliminary report on new discoveries. Bull Geol Soc China 14:427–461

    Google Scholar 

  • Whittaker D (2000) Ageing from the dentition. In: Cox M, May S (eds) Human Osteology in Archaeology and Forensic science. Greenwich Medical Media, London, pp 83–99

    Google Scholar 

  • Wind J, Zonneveld F (1985) Radiology of fossil hominid skulls. In: Tobias PV (ed) Hominid Evolution: Past, Present and Future. Liss, New York, pp 437–442

    Google Scholar 

  • Woo J-K, Peng R (1959) Fossil human skull of early paleoanthropic stage found at Mapa, Shaoquan, Kwangtung province. Vert Palas 3:176–183

    Google Scholar 

  • Zonneveld FW, Wind J (1985) High resolution computed tomography of fossil hominid skulls: a new method and some results. In: Tobias PV (ed) Hominid Evolution: Past, Present and Future. Liss, New York, pp 427–436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brothwell, D. (2008). Normal Variations in Fossils and Recent Human Groups. In: Paleoradiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48833-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48833-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48832-3

  • Online ISBN: 978-3-540-48833-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics