Skip to main content

The Formation of Mussel Byssus: Anatomy of a Natural Manufacturing Process

  • Chapter
Book cover Structure, Cellular Synthesis and Assembly of Biopolymers

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 19))

Abstract

The byssus is an extraorganismic polymeric structure in marine mussels and generally employed as a holdfast or tethering device. Like man-made plastics, the byssus is robust, tough, devoid of living cells, and disposable. Unlike plastics, however, it is ultimately biodegradable. Structural and mechanical analysis of the byssus reveals an exquisitely complex design at every level from the microcellular solid in the plaques to the fiber gradients in the thread core to the interpenetrating polymer networks of the byssal varnish. Such fine tuning of materials properties deserves closer scrutiny and, perhaps, imitation. In this vein, the formation of byssus can be caricatured as a series of manufacturing processes including injection and extrusion molding, calendering, and sizing. The biological relevance of each of these caricatures is explored in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams E (1978) Invertebrate collagens. Science 202:591–597

    Article  PubMed  CAS  Google Scholar 

  • Allen JA, Cook M, Jackson DJ, Preston S, Worth EM (1976) Observations on the rate of production and mechanical properties of the byssus threads of Mytilus edulis L. J Molliscan Stud 42:279–289

    Google Scholar 

  • Amato I (1991) Heeding the call of the wild. Science 253:966–968

    Article  PubMed  CAS  Google Scholar 

  • Bairati A, Vitellaro L (1973) The occurrence of filamentous banded elements as components of Mytilus galloprovincialis byssus. Experientia 29:593–594

    Article  PubMed  Google Scholar 

  • Banu A, Shyamasundari K, Rao KH (1980) Histological and histochemical observations on the foot glands of some byssus bearing bivalves of the Waltair coast. Histochem J 12:553–563

    Article  PubMed  CAS  Google Scholar 

  • Benedict CV, Waite JH (1986a) Composition and ultrastructure of the byssus of Mytilus edulis. J Morphol 189:261–270

    Article  PubMed  CAS  Google Scholar 

  • Benedict CV, Waite JH (1986b) Location and analysis of byssal structural proteins. J Morphol 189:171–181

    Article  PubMed  CAS  Google Scholar 

  • Bharathi N, Ramalingam K (1983) Electrophortic study of the enzyme phenoloxidase from the enzyme gland in the foot of Perna viridis L. J Exp Mar Biol Ecol 70:123–128

    Article  CAS  Google Scholar 

  • Birley AW, Scott M J (1982) Plastics materials: properties and applications. Leonard Hill, Glasgow

    Google Scholar 

  • Bowen JH, Mitchell PWD, Ohannessian TD (1974) Dental cement from marine sources. Tech Rep Franklin Inst Res Lab C2781:1–29

    Google Scholar 

  • Brown CH (1950) A review of the methods available for the determination of forces stabilising proteins in animals. Q J Microsc Sci 91:331–339

    Google Scholar 

  • Brown CH (1952) Some structural proteins of Mytilus edulis. Q J Microsc Sci 92:487–502

    Google Scholar 

  • Carriker MR (1990) Functional significance of the pediveliger in bivalve development. In: Morton B (ed) The Bivalvia — proceedings of a memorial symposium in honour of Sir Charles Maurice Yonge. Hong Kong University Press, Hong Kong, pp 267–282

    Google Scholar 

  • Characklis WG (1981) Fouling biofilm development: a process analysis. Biotechnol Bioeng 23:1923–1960

    Article  CAS  Google Scholar 

  • Collocott TC, Dobson AB (eds) (1974) Chambers dictionary of science and technology. Chambers Ltd, Edinburgh

    Google Scholar 

  • Cornyn J (1981) The relationship between joint durability and water diffusion. Dev Adhes 2:279–313

    Google Scholar 

  • Cook WD (1991) Fracture and structure of highly cross-linked polymer composites. J Appl Polym Sci 42:1259–1269

    Article  CAS  Google Scholar 

  • Cox LR (1969) General features of Bivalvia. In: Moore RC (ed) Treatise on invertebrate paleontology, Part N, vol 1/6. Geological Society of America Inc and University of Kansas Press, Manhattan KS, ppN2-N129

    Google Scholar 

  • Day RW, Barkai A, Wickens PA (1991) Trapping of three drilling whelks by two species of mussel. J Exp Mar Biol Ecol 149:109–122

    Article  Google Scholar 

  • Denny MW (1988) Biology and mechanics of the wave-swept environment. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Eagland D (1988) Adhesion and adhesive performance. Endeavour 12:179–184

    Article  CAS  Google Scholar 

  • Filpula DR, Lee SM, Link RP, Strausberg SL, Strausberg RL (1990) Structural and functional repetition in a marine mussel adhesive protein. Biotechnol Prog 6:171–177

    Article  PubMed  CAS  Google Scholar 

  • Flam F (1991) Plastics get oriented and get new properties. Science 251:874–876

    Article  PubMed  CAS  Google Scholar 

  • Fraenger W (1983) Hieronymus Bosch. GP Putnam’s Sons, New York

    Google Scholar 

  • Gathercole LJ, Keller A (1975) Light microscopic waveforms in collagenous tissues and their structural implications. In: Atkins EDT, Keller A (eds) Structure of fibrous biopolymers. Butterworths, London, pp 153–175

    Google Scholar 

  • Gerzeli G (1961) Ricerche istomorfologiche e istochimiche sulla formazione del bisso in Mytilus galloprovincialis. Pubbl Stn Zool Napoli 32:88–103

    CAS  Google Scholar 

  • Hamilton EI (1980) Concentration and distribution of uranium in Mytilus edulis and associated materials. Mar Ecol Prog Ser 2:61–73

    Article  CAS  Google Scholar 

  • Harger JRE (1970) The effect of wave impact on some aspects of the biology of sea mussels. Veliger 12:401–414

    Google Scholar 

  • Harris VA (1990) Sessile animals of the seashore. Chapman and Hall, London

    Google Scholar 

  • Iizuka E (1983) The physico-chemical properties of silk fibers and the fiber spinning process. Experientia 39:449–454

    Article  CAS  Google Scholar 

  • Jackson CL, Shaw MT, Aubert JH (1991) The linear elastic properties of microcellular foams. Polymer 32:221–225

    Article  CAS  Google Scholar 

  • Koide M, Lee DS, Goldberg ED (1982) Metal and transuranic records in mussel shells, byssal threads and tissues. Estuarine Coastal Shelf Sci 15:679–695

    Article  CAS  Google Scholar 

  • Lane DJW, Nott JA (1975) Study of the morphology, fine structure and histochemistry of the foot of the pediveliger of Mytilus edulis L. J Mar Biol Assoc UK 55:477–495

    Article  Google Scholar 

  • Lane DJW, Beaumont AR, Hunter JR (1985) Byssus drifting and drifting threads of the young post-larval mussel Mytilus edulis. Mar Biol 84:301–308

    Article  Google Scholar 

  • Lucas F, Shaw JTB, Smith SG (1955) The chemical constitution of some silk fibroins and its bearing on their physical properties. J Textile Inst T 46:440–452

    Google Scholar 

  • Maheo R (1970) Etude de la pose et de l’activité de secretion du byssus de Mytilus edulis L. Cah Biol Mar 11:475–483

    Google Scholar 

  • Mascolo JM, Waite JH (1986) Protein gradients in the byssal threads of some marine bivalve molluscs. J Exp Zool 240:1–7

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka T, Inoue Y, Takabatake J (1991) Fiber orientation and material properties analysis in injection molding. Kobunshi Ronbunshu 48:151–157 (in Japanese)

    Article  CAS  Google Scholar 

  • McMahon RF (1988) Respiratory response to periodic emergence in intertidal molluscs. Am Zool 244:97–114

    Google Scholar 

  • Mercer EH (1952) Observations on the molecular structure of byssus fibers. Aust J Mar Freshwater Res 3:199–204

    Article  CAS  Google Scholar 

  • Montcrieff RW (1975) Man-made fibers. Newnes-Butterworths, London

    Google Scholar 

  • Ockelmann KW (1983) Descriptions of mytilid species and definition of the Dacrydiinae N. Subfam. (Mytilacea-Bivalvia) Ophelia 22:81–123

    Article  Google Scholar 

  • Okumura K, Miyake Y, Taguchi H, Shimabayashi Y (1989) Enhanced stability of protein foam due to disulfide bond formation just after foaming. Agric Biol Chem 53:2029–2030

    Article  CAS  Google Scholar 

  • Pikkarainen J, Rantanen J, Vastamäki M, Kari K, Lampiaho K, Kulonen E (1968) On collagens of invertebrates with special reference to Mytilus edulis. Eur J Biochem 4:555– 560

    Article  PubMed  CAS  Google Scholar 

  • Price HA (1980) Seasonal variation in the strength of byssal attachment of the common mussel Mytilus edulis. J Mar Biol Assoc UK 60:1035–1037

    Article  Google Scholar 

  • Price HA (1983) Structure and formation of the byssus complex in Mytilus (Mollusca, Bivalvia). J Moluscan Stud 49:9–17

    Google Scholar 

  • Pujol JP (1967) Le complex byssogene des mollusques bivalves: Histochimie comparee des secretions chez Mytilus edulis et Pinna nobilis. Bull Soc Linn Normandie 10:308–332

    Google Scholar 

  • Rudall KM (1955) Distribution of collagen and chitin. Symp Soc Exp Biol 9:49–79

    Google Scholar 

  • Rudall KM (1962) Silk and other cocoon proteins. In: Florkin M, Mason HS (eds) Comparative biochemistry, vol IV. Academic Press, New York, p 397

    Google Scholar 

  • Rzepecki LM, Chin SS, Waite JH, Lavin MF (1991) Molecular diversity of marine glues: polyphenols proteins from five mussel species. Mar Mol Biol Biotechnol 1:68–79

    Google Scholar 

  • Seydel E (1909) Untersuchungen über den Byssusapparat der Lamellibanchiaten. Zool Jahrb 27:465–582

    Google Scholar 

  • Shutov FA (1986) Integral structural polymer foams. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Smeathers JE, Vincent JFV (1979) Mechanical properties of mussel byssus threads. J Molluscan Stud 45:219–230

    Google Scholar 

  • Smith AM (1991) The role of suction in the adhesion of limpets. J Exp Biol 161:151–169

    Google Scholar 

  • Smyth JD (1954) A technique for the histochemical demonstration of polyphenoloxidase and its application to egg-shell formation in helminths and byssus formation in Mytilus. Q J Microsc Sci 95:139–152

    Google Scholar 

  • Southgate T, Myers AA (1985) Mussel fouling on the Celtic Sea Kinsale Field gas platforms. Estuarine Coastal Shelf Sci 20:651–659

    Article  Google Scholar 

  • Sperling LH (1981) Interpenetrating polymer networks and related materials. Plenum, New York

    Book  Google Scholar 

  • Stanley SM (1972) Functional morphology and evolution of byssally attached bivalve mollusks. J Paleontol 46:165–212

    Google Scholar 

  • Strausberg RL, Link RP (1990) Protein-based medical adhesives. Trends Biotechnol 8:53–57

    Article  PubMed  CAS  Google Scholar 

  • Tamarin A (1975) An ultrastructural study of byssus stem formation in Mytilus califomianus. J Morphol 145:151–178

    Article  Google Scholar 

  • Tamarin A, Keller PJ (1972) An ultrastructural study of the byssal thread forming system in Mytilus. J Ultrastruct Res 40:401–416

    Article  PubMed  CAS  Google Scholar 

  • Tamarin A, Lewis P, Askey J (1974) Specialized cilia of the byssus attachment plaque forming region in Mytilus califomianus. J Morphol 142:321–328

    Article  PubMed  CAS  Google Scholar 

  • Tamarin A, Lewis P, Askey J (1976) The structure and formation of the byssal attachment plaque-forming region in Mytilus califomianus. J Morphol 149:199–220

    Article  PubMed  CAS  Google Scholar 

  • Turner RD, Rosewater J (1958) The family Pinnidae in the western Atlantic. Johnsonia 3:285–325

    Google Scholar 

  • Udhayakumar M, Karande A A (1989) Byssal threads of Mytilopsis sallei (Recluz) and their adhesive strength. Proc Indian Acad Sci 98:65–76

    Article  Google Scholar 

  • Van Winkle W (1969) Mechanical properties of byssal threads. NSF-RPCT Rep Part 11:1–14

    Google Scholar 

  • Veis A (1982) Collagen fibrillogenesis. Connect Tissue Res 10:11–24

    Article  PubMed  CAS  Google Scholar 

  • Vincent JFV (1990) Structural biomaterials, revised edn. Princeton University Press, Princeton NJ

    Google Scholar 

  • Vitellaro-Zucarrello L (1980) The collagen gland of Mytilus: an ultrastructural and cytochemical study on secretory granules. J Ultrastruct Res 73:135–147

    Article  Google Scholar 

  • Vitellaro-Zucarrello L (1981) Ultrastructural and cytochemical study on the enzyme gland of the foot of a mollusc. Tissue Cell 13:701–713

    Article  Google Scholar 

  • Vitellaro-Zucarello L (1983) Ultrastructural and cytochemical study of a mucous gland of the foot of Mytilus galloprovincialis. Basic Appl Histochem 27:103–115

    Google Scholar 

  • Vitellaro-Zucarrello L, De Biasi S, Blum I (1983a) Histochemical and ultrastructural study on the innervation of the byssus glands of Mytilus galloprovincialis. Cell Tissue Res 233:403–413

    Google Scholar 

  • Vitellaro-Zucarrello L, De Biasi S, Bairati A (1983b) The ultrastructure of the byssal apparatus of a mussel. V. Localization of the collagenic and elastic components in the threads. Tissue Cell 15:547–554

    Article  Google Scholar 

  • Waite JH (1983) Adhesion in byssally attached bivalves. Biol Rev 58:209–231

    Article  CAS  Google Scholar 

  • Waite JH (1985) Catecholoxidase in the byssus of the common mussel. J Mar Biol Assoc UK 65:359–371

    Article  CAS  Google Scholar 

  • Waite JH (1986) Mussel glue from Mytilus califomianus Conrad: a comparative study. J Comp Physiol B 156:491–496

    Article  PubMed  CAS  Google Scholar 

  • Waite JH (1987) Nature’s underwater adhesive specialist. Int J Adhesion Adhes 7:9–14

    Article  CAS  Google Scholar 

  • Waite JH (1990a) Marine adhesive proteins: natural composite thermosets. Int J Biol Macromol 12:139–144

    Article  PubMed  CAS  Google Scholar 

  • Waite JH (1990b) Phylogeny and chemical diversity of quinone-tanned glues and varnishes. Comp Biochem Physiol 97B:19–29

    CAS  Google Scholar 

  • Waite JH, Tanzer ML (1983) Polyphenols protein of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 212:1038–1040

    Article  Google Scholar 

  • Waite JH, Housley TJ, Tanzer ML (1985) Peptide repeats in a mussel glue protein: variations on a theme. Biochemistry 24:5010–5014

    Article  PubMed  CAS  Google Scholar 

  • Waite JH, Hansen DC, Little KT (1989) The glue protein of ribbed mussels (Geukensia demissa): a natural adhesive with some features of collagen. J Comp Physiol B 159:517–525

    Article  PubMed  CAS  Google Scholar 

  • Ward JE (1985) Functional morphology and histochemistry of the attachment thread of the ectoparasite Boonea impressa. Bull Am Malacol Union 3:97 (Abstr)

    Google Scholar 

  • Witman JD, Suchanek TH (1984) Mussels in flow: drag and dislodgement by epizoans. Mar Ecol Prog Ser 16:259–268

    Article  Google Scholar 

  • Williams JM, Wrobleski DA (1988) Spatial distribution of the phases of water in oil emulsions. Langmuir 4:656–662

    Article  CAS  Google Scholar 

  • Williamson HC (1907) The spawning, growth and movement of the mussel (Mytilus edulis), horse-mussel (Modiolus modiolus, L), and the spoutfish (Solen siliqua, L). Annu Rep Fish Board Scot 25 (part III):221–254

    Google Scholar 

  • Yonge CM (1955) Adaptation to rock boring in Botula and Lithophaga with a discussion on the evolution of this habit. Q J Microsc Sci 96:383–410

    Google Scholar 

  • Yonge CM (1962) The primitive significance of the byssus in the bivalvia and its effects in evolution. J Mar Biol Assoc UK 42:113–125

    Article  Google Scholar 

  • Yonge CM (1979) Cementation in bivalves. In: van der Spoel S, van Bruggen AC, Lever J (eds) Pathways in malacology. Junk Publ, the Hague, p 83

    Google Scholar 

  • Yonge CM, Thompson TE (1976) Living marine molluscs. Collins, London, p 167

    Google Scholar 

  • Young GA (1985) Byssus thread formation by the mussel Mytilus edulis: effects of environmental factors. Mar Ecol Prog Ser 24:261–271

    Article  Google Scholar 

  • Young GA (1983a) Response to and selection between firm substrata by Mytilus edulis. J Mar Biol Assoc UK 63:653–659

    Article  Google Scholar 

  • Young GA (1983b) The effect of sediment type upon the position and depth at which byssal attachment occurs in Mytilus edulis. J Mar Biol Assoc UK 63:641–651

    Article  Google Scholar 

  • Young GA, Crisp DJ (1982) Marine animals and adhesion. In: Allen KW (ed) Adhesion 6. Applied Science Publishers, Barking, England, pp 19–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waite, J.H. (1992). The Formation of Mussel Byssus: Anatomy of a Natural Manufacturing Process. In: Case, S.T. (eds) Structure, Cellular Synthesis and Assembly of Biopolymers. Results and Problems in Cell Differentiation, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47207-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47207-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22440-3

  • Online ISBN: 978-3-540-47207-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics