Skip to main content

3. Lattice-gas cellular automata

  • Chapter
  • First Online:
Lattice Gas Cellular Automata and Lattice Boltzmann Models

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1725))

Abstract

  • 3.1 The HPP lattice-gas cellular automata

    • 3.1.1 Model description

    • 3.1.2 Implementation of the HPP model: How to code lattice-gas cellular automata?

    • 3.1.3 Initialization

    • 3.1.4 Coarse graining

  • 3.2 The FHP lattice-gas cellular automata

    • 3.2.1 The lattice and the collision rules

    • 3.2.2 Microdynamics of the FHP model

    • 3.2.3 The Liouville equation

    • 3.2.4 Mass and momentum density

    • 3.2.5 Equilibrium mean occupation numbers

    • 3.2.6 Derivation of the macroscopic equations: multi-scale analysis

    • 3.2.7 Boundary conditions

    • 3.2.8 Inclusion of body forces

    • 3.2.9 Numerical experiments with FHP

    • 3.2.10 The 8-bit FHP model

  • 3.3 Lattice tensors and isotropy in the macroscopic limit

    • 3.3.1 Isotropic tensors

    • 3.3.2 Lattice tensors: single-speed models

    • 3.3.3 Generalized lattice tensors for multi-speed models

    • 3.3.4 Thermal LBMs: D2Q13-FHP (multi-speed FHP model)

    • 3.3.5 Exercises

  • 3.4 Desperately seeking a lattice for simulations in three dimensions

    • 3.4.1 Three dimensions

    • 3.4.2 Five and higher dimensions

    • 3.4.3 Four dimensions

  • 3.5 FCHC

    • 3.5.1 Isometric collision rules for FCHC by Hénon

    • 3.5.2 FCHC, computers and modified collision rules

    • 3.5.3 Isometric rules for HPP and FHP

    • 3.5.4 What else?

  • 3.6 The pair interaction (PI) lattice-gas cellular automata

    • 3.6.1 Lattice, cells, and interaction in 2D

    • 3.6.2 Macroscopic equations

    • 3.6.3 Comparison of PI with FHP and FCHC

    • 3.6.4 The collision operator and propagation in C and FORTRAN

  • 3.7 Multi-speed and thermal lattice-gas cellular automata

    • 3.7.1 The D3Q19 model

    • 3.7.2 The D2Q9 model

    • 3.7.3 The D2Q21 model

    • 3.7.4 Transsonic and supersonic flows: D2Q25, D2Q57, D2Q129

  • 3.8 Zanetti (‘staggered’) invariants

    • 3.8.1 FHP

    • 3.8.2 Significance of the Zanetti invariants

  • 3.9 Lattice-gas cellular automata: What else?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter A. Wolf-Gladrow .

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Wolf-Gladrow, D.A. (2000). 3. Lattice-gas cellular automata. In: Lattice Gas Cellular Automata and Lattice Boltzmann Models. Lecture Notes in Mathematics, vol 1725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46586-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46586-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66973-9

  • Online ISBN: 978-3-540-46586-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics