Skip to main content

Abstract

Intermediate-energy heavy-ion reactions produce a mid-rapidity region or neck, mostly in the semiperipheral collisions. Brief theory and experiment surveys are presented. General properties of the mid-rapidity zone are reviewed and discussed in the framework of reaction dynamics. Hierarchy effect, neutron enrichment, isospin diffusion are all new neck phenomena which are surveyed. The main neck observables are also examined, mainly in the context of the symmetry term of the nuclear equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bonasera, G.F. Bertsch, E.N. El-Sayed, Phys. Lett. B 141, 9 (1984).

    Article  ADS  Google Scholar 

  2. M. Colonna, N. Colonna, A. Bonasera, M. Di Toro, Nucl. Phys. A 541, 295 (1992).

    Article  ADS  Google Scholar 

  3. L.G. Sobotka, Phys. Rev. C 50, 1272R (1994).

    Article  ADS  Google Scholar 

  4. M. Colonna, M. Di Toro, A. Guarnera, Nucl. Phys. A 589, 160 (1995).

    Article  ADS  Google Scholar 

  5. M. Di Toro et al., Progr. Part. Nucl. Phys. 42, 125 (1999).

    Article  ADS  Google Scholar 

  6. M. Di Toro et al., Nucl. Phys. A 681, 426c (2001).

    Article  ADS  Google Scholar 

  7. V. Baran, M. Colonna, V. Greco, M. Di Toro, M. Zielinska-Pfabé, H.H. Wolter, Nucl. Phys. A 703, 603 (2002).

    Article  ADS  Google Scholar 

  8. V. Baran, M. Colonna, M. Di Toro, Nucl. Phys. A 730, 329 (2004).

    Article  ADS  Google Scholar 

  9. V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005).

    Article  ADS  Google Scholar 

  10. M. Colonna, M. Di Toro, G. Fabbri, S. Maccarone, Phys. Rev. C 57, 1410 (1998).

    Article  ADS  Google Scholar 

  11. R. Lionti, V. Baran, M. Colonna, M. Di Toro, Phys. Lett. B 625, 33 (2005).

    Article  ADS  Google Scholar 

  12. L. Stuttgé et al., Nucl. Phys. A 539, 511 (1992).

    Article  ADS  Google Scholar 

  13. R. Wada et al., Nucl. Phys. A 548, 471 (1992).

    Article  ADS  Google Scholar 

  14. D.E. Fields et al., Phys. Rev. Lett. 69, 3713 (1992).

    Article  ADS  Google Scholar 

  15. J.E. Sauvestre et al., Phys. Lett. B 335, 300 (1994).

    Article  ADS  Google Scholar 

  16. J. Boger et al., Phys. Rev. C 41, 801 (1990).

    Article  ADS  Google Scholar 

  17. S.L. Chen et al., Phys. Rev. C 54, R2114 (1996).

    Article  ADS  Google Scholar 

  18. R. Yanez et al., Phys. Rev. Lett. 82, 3585 (1999).

    Article  ADS  Google Scholar 

  19. G. Casini et al., Phys. Rev. Lett. 71, 2567 (1993).

    Article  ADS  Google Scholar 

  20. A.A. Stefanini et al., Z. Phys. A 351, 167 (1995).

    Article  ADS  Google Scholar 

  21. J. Tõke et al., Phys. Rev. Lett. 75, 2920 (1995).

    Article  ADS  Google Scholar 

  22. J.F. Lecolley et al., Phys. Lett. B 354, 202 (1995).

    Article  ADS  Google Scholar 

  23. C.P. Montoya et al., Phys. Rev. Lett. 73, 3070 (1994).

    Article  ADS  Google Scholar 

  24. L. Beaulieu et al., Phys. Rev. Lett. 77, 462 (1996).

    Article  ADS  Google Scholar 

  25. S. Piantelli et al., Phys. Rev. Lett. 88, 052701 (2002).

    Article  ADS  Google Scholar 

  26. P. Pawlowski et al., Eur. Phys. J. A 9, 371 (2000).

    Article  ADS  Google Scholar 

  27. D. Doré et al., Phys. Rev. C 63, 034612 (2001).

    Article  ADS  Google Scholar 

  28. W.G. Lynch, Nucl. Phys. A 583, 471c (1995).

    Article  ADS  Google Scholar 

  29. J. Łukasik et al., Phys. Lett. B 566, 76 (2003).

    Article  ADS  Google Scholar 

  30. Y. Larochelle et al., Phys. Rev. C 59, R565 (1999).

    Article  ADS  Google Scholar 

  31. A. Mangiarotti et al., Phys. Rev. Lett. 93, 232701 (2004).

    Article  ADS  Google Scholar 

  32. J. Péter et al., Nucl. Phys. A 593, 95 (1995).

    Article  ADS  Google Scholar 

  33. J. Łukasik et al., Phys. Rev. C 55, 1906 (1997).

    Article  ADS  Google Scholar 

  34. J. Tõke et al., Nucl. Phys. A 583, 519c (1995).

    Article  ADS  Google Scholar 

  35. J. Tõke et al., Phys. Rev. Lett. 77, 3514 (1996).

    Article  ADS  Google Scholar 

  36. Y. Larochelle et al., Phys. Rev. C 55, 1869 (1997).

    Article  ADS  Google Scholar 

  37. P. Pawlowski et al., Phys. Rev. C 57, 1771 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  38. T. Lefort et al., Nucl. Phys. A 662, 397 (2000); D. Doré et al., Phys. Lett. B 491, 15 (2000).

    Article  ADS  Google Scholar 

  39. F. Bocage et al., Nucl. Phys. A 676, 391 (2000).

    Article  ADS  Google Scholar 

  40. B. Grabez, Phys. Rev. C 64, 057601 (2001).

    Article  ADS  Google Scholar 

  41. L. Gingras et al., Phys. Rev. C 65, 061604 (2002).

    Article  ADS  Google Scholar 

  42. B. Davin et al., Phys. Rev. C 65, 064614 (2002).

    Article  ADS  Google Scholar 

  43. J. Colin et al., Phys. Rev. C 67, 064603 (2003).

    Article  ADS  Google Scholar 

  44. A. Pagano et al., Nucl. Phys. A 734, 504c (2004).

    Article  ADS  Google Scholar 

  45. J.F. Dempsey et al., Phys. Rev. C 54, 1710 (1996).

    Article  ADS  Google Scholar 

  46. G. Poggi, Nucl. Phys. A 685, 296c (2001).

    Article  ADS  Google Scholar 

  47. P.M. Milazzo et al., Phys. Lett. B 509, 204 (2001).

    Article  ADS  Google Scholar 

  48. P.M. Milazzo et al., Nucl. Phys. A 703, 466 (2002).

    Article  ADS  Google Scholar 

  49. P.M. Milazzo et al., Nucl. Phys. A 756, 39 (2005).

    Article  ADS  Google Scholar 

  50. D.V. Shetty et al., Phys. Rev. C 68, 021602(R) (2003).

    ADS  Google Scholar 

  51. D.V. Shetty et al., Phys. Rev. C 70, 011601(R) (2004).

    Article  ADS  Google Scholar 

  52. E. Plagnol et al., Phys. Rev. C 61, 014606 (2000).

    Article  ADS  Google Scholar 

  53. Y. Larochelle et al., Phys. Rev. C 62, 051602(R) (2000).

    Article  ADS  Google Scholar 

  54. D. Thériault et al., Phys. Rev. C 71, 014610 (2005).

    Article  ADS  Google Scholar 

  55. Chimera Collaboration (E. De Filippo et al.), Phys. Rev. C 71, 044602 (2005).

    Article  Google Scholar 

  56. S. Hudan et al., Phys. Rev. C 71, 054604 (2005).

    Article  ADS  Google Scholar 

  57. L.G. Sobotka et al., Phys. Rev. C 55, 2109 (1997).

    Article  ADS  Google Scholar 

  58. L.G. Sobotka et al., Phys. Rev. C 62, 031603(R) (2000).

    Article  ADS  Google Scholar 

  59. H. Xu et al., Phys. Rev. C 65, 061602(R) (2002).

    ADS  Google Scholar 

  60. M.B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004).

    Article  ADS  Google Scholar 

  61. F. Rami et al., Phys. Rev. Lett. 84, 1120 (2000).

    Article  ADS  Google Scholar 

  62. Chimera Collaboration (E. De Filippo, A. Pagano, E. Piasecki et al.), Phys. Rev. C 71, 064604 (2005).

    Article  Google Scholar 

  63. Chimera Collaboration (J. Wilczyński et al.), Int. J. Mod. Phys. E 14, 353 (2005); Chimera Collaboration (E. De Filippo et al.), Phys. Rev. C 71, 044602 (2005).

    Article  Google Scholar 

  64. It has been proposed to call the Viola-violation-correlation plot as Wilczyński-2 Plot. Indeed this correlation, very important to rule out a statistical fission scenario for fragments produced at mid-rapidity, nicely emerged during hot discussions of one of us (M.D.T.) with J. Wilczyński at the LNS-INFN, Catania. In fact this correlation represents also a chronometer of the fragment formation mechanism. In this sense it is the nice Fermi energy complement of the famous Wilczyński Plot which gives the time scales in Deep-Inelastic Collisions.

    Google Scholar 

  65. V. Baran, M. Colonna, M. Di Toro, M. Zielinska-Pfabé, H.H. Wolter, Phys. Rev. C 72, 064620 (2005).

    Article  ADS  Google Scholar 

  66. L.-W. Chen, C.M. Ko, B.-A. Li, Phys. Rev. Lett. 94, 032701 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

Di Toro, M., Olmi, A., Roy, R. (2006). Neck dynamics. In: Chomaz, P., Gulminelli, F., Trautmann, W., Yennello, S.J. (eds) Dynamics and Thermodynamics with Nuclear Degrees of Freedom. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46496-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46496-9_6

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46494-5

  • Online ISBN: 978-3-540-46496-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics