Skip to main content

Evaluation of 3D Correspondence Methods for Model Building

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

Abstract

The correspondence problem is of high relevance in the construction and use of statistical models. Statistical models are used for a variety of medical application, e.g. segmentation, registration and shape analysis. In this paper, we present comparative studies in three anatomical structures of four different correspondence establishing methods. The goal in all of the presented studies is a model-based application. We have analyzed both the direct correspondence via manually selected landmarks as well as the properties of the model implied by the correspondences, in regard to compactness, generalization and specificity. The studied methods include a manually initialized subdivision surface (MSS) method and three automatic methods that optimize the object parameterization: SPHARM, MDL and the covariance determinant (DetCov) method. In all studies, DetCov and MDL showed very similar results. The model properties of DetCov and MDL were better than SPHARM and MSS. The results suggest that for modeling purposes the best of the studied correspondence method are MDL and DetCov.

We are thankful to C. Brechbühler for the SPHARM software and to G. Gerig for support and insightful discussions. D. Jones and D. Weinberger at NIMH (Bethesda, MD) provided the MRI ventricle data. J. Lieberman and the neuro-image analysis lab at UNC Chapel Hill provided the ventricle segmentations. This research was partially funded by the Swiss National Centers of Competence in Research CO-ME (Computer assisted and image guided medical interventions). The femoral head datasets were provided within CO-ME by F. Langlotz.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  2. Brechbühler, C., Gerig, G., Kübler, O.: Parameterization of Closed Surfaces for 3-D Shape Description. Comp. Vision and Image Under. 61, 154–170 (1995)

    Article  Google Scholar 

  3. Brett, A.D., Taylor, C.J.: Construction of 3D Shape Models of Femoral Articular Cartilage Using Harmonic Maps. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 1205–1214. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Christensen, G., Joshi, S., Miller, M.: Volumetric Transformation of Brain Anatomy. IEEE Trans. Med. Imag. 16(6), 864–877 (1997)

    Article  Google Scholar 

  5. Cootes, T., Hill, A., Taylor, C.J., Haslam, J.: The Use of Active Shape Models for Locating Structures in Medical Images. Img. Vis. Comp. 12, 355–366 (1994)

    Article  Google Scholar 

  6. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: 3D Statistical Shape Models Using Direct Optimization of Description Length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–20. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Davies, R.H: Learning Shape: Optimal Models for Analysing Natural Variability. Dissertation University of Manchester (2002)

    Google Scholar 

  8. Davies, R.H, Twining, C.J., Cootes, T.F., Waterton, J. C., Taylor, C.J.: A Minimum Description Length Approach to Statistical Shape Model. IEEE TMI 21 (2002)

    Google Scholar 

  9. Fleute, M., Lavallee, S.: Building a Complete Surface Model from Sparse Data Using Statistical Shape Models. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 879–887. Springer, Heidelberg (1998)

    Google Scholar 

  10. Gerig, G., Styner, M.: Shape versus Size: Improved Understanding of the Morphology of Brain Structures. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 24–32. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Hill, A., Thornham, A., Taylor, C.J.: Model-Based Interpretation of 3D Medical Images. In: Brit. Mach. Vision Conf. BMCV, pp. 339–348 (1993)

    Google Scholar 

  12. Hug, J., Brechbühler, C., Székely, G.: Tamed Snake: A Particle System for Robust Semi-automatic Segmentation. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 106–115. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Joshi, S.C., Banerjee, A., Christensen, G.E., Csernansky, C., Haller, J.W., Miller, I., Wang, L.: Gaussian Random Fields on Sub-Manifolds for Characterizing Brain Surfaces. In: Duncan, J.S., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 381–386. Springer, Heidelberg (1997)

    Google Scholar 

  14. McInerney, T., Terzopoulos, D.: Deformable Models in Medical Image Analysis: A Survey. Med. Image Analysis 1(2), 91–108 (1996)

    Article  Google Scholar 

  15. Kelemen, A., Székely, G., Gerig, G.: Elastic Model-Based Segmentation of 3D Neuroradiological Data Sets. IEEE Trans. Med. Imag. 18, 828–839 (1999)

    Article  Google Scholar 

  16. Kotcheff, A.C.W., Taylor, C.J.: Automatic Construction of Eigenshape Models by Direct Optimization. Med. Image Analysis 2(4), 303–314 (1998)

    Article  Google Scholar 

  17. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated Modelbased Tissue Classication of MR Images of the Brain. IEEE TMI 18, 897–908 (1999)

    Google Scholar 

  18. Meier, D., Fisher, E.: Parameter Space Warping: Shape-Based Correspondence Between Morphologically Different Objects. Trans. Med. Imag. 12, 31–47 (2002)

    Article  Google Scholar 

  19. Rangarajan, A., Chui, H., Bookstein, F.L.: The Softassign Procrustes Matching Algorithm. In: Duncan, J.S., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 29–42. Springer, Heidelberg (1997)

    Google Scholar 

  20. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 77–84. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Styner, M., Gerig, G., Lieberman, J., Jones, D., Weinberger, D.: Statistical Shape Analysis of Neuroanatomical Structures Based on Medial Models. Med. Image Anal.

    Google Scholar 

  22. Szeliski, R., Lavallee, S.: Matching 3-D anatomical surfaces with non rigid deformations using octree-splines, Int. J. Computer Vision 18(2), 200–290 (1996)

    Article  Google Scholar 

  23. Tagare, H.: Shape-Based Nonrigid Correspondence with Application to Heart Motion Analysis. IEEE Trans. Med. Imag. 18(7), 570–580 (1999)

    Article  Google Scholar 

  24. Wang, Y., Peterson, B.S., Staib, L.H.: Shape-based 3D Surface Correspondence Using Geodesics and Local Geometry. CVPR 2, 644–651 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Styner, M.A. et al. (2003). Evaluation of 3D Correspondence Methods for Model Building. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics