Skip to main content

Hierarchical Annealing for Random Image Synthesis

  • Conference paper
Book cover Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2003)

Abstract

Simulated annealing has been applied to a wide variety of problems in image processing and synthesis. However, particularly in scientific applications, the computational complexity of annealing may constrain its effectiveness, in that the demand for very high resolution samples or even three-dimensional data may result in huge configuration spaces. In this paper a method of hierarchical simulated annealing is introduced, which can lead to large gains in computational complexity for suitable models. As an example, the approach is applied to the synthesis of binary porous media images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besag, J., Green, P., Higdon, D., Mengersen, K.: Bayesian computation and stochastic systems (with discussion). Statistical Science 10, 3–66 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouman, C., Shapiro, M.: A multiscale random field model for Bayesian image segmentation. IEEE Image Processing 3(2), 162–177 (1994)

    Article  Google Scholar 

  3. Bouman, C., Liu, B.: Multiple resolution segmentation of textured images. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(2), 99–113 (1991)

    Article  Google Scholar 

  4. Bramble, J.: Multigrid method. John Wiley & Sons, Chichester (1993)

    Google Scholar 

  5. Brémaud, P.: Markov chains: Gibbs fields, monte carlo simulation, and queues. Springer, Heidelberg (1998)

    Google Scholar 

  6. Geiger, D., Kogler Jr., J.E.: Scaling images and image features via the renormalization group. In: Proceedings IEEE CVPR 1993, New York (June 1993)

    Google Scholar 

  7. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  8. Gidas, B.: Nonstationary markov chains and convergence of the annealing algorithm. Journal of Statistical Physics 39, 73–131 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gidas, B.: A renormalization group approach to image processing problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(2), 164–180 (1989)

    Article  MATH  Google Scholar 

  10. Hackbusch, W.: Multigrid methods and applications. In: Computational Mathematics, vol. 4. Springer, Heidelberg (1985)

    Google Scholar 

  11. Heitz, F., Perez, P., Bouthemy, P.: Multiscale minimization of global energy functions in some visual recovery problems. Computer Vision, Graphics, and Image Processing. Image Understanding 59(1), 125–134 (1994)

    Article  Google Scholar 

  12. Kato, Z., Berthod, M., Zerubia, J.: A hierarchical Markov random field model and multitemperature annealing for parallel image classification. Graphical Models and Image Processing 58(1), 18–37 (1996)

    Article  Google Scholar 

  13. Liang, Z., Ioannidis, M.A., Chatzis, I.: Reconstruction of 3d porous media using simulated annealing. In: Bentley, et al. (eds.) Computational Methods in Water Resources XIII. Balkema, Rotterdam (2000)

    Google Scholar 

  14. Luettgen, M., Karl, W., Willsky, A., Tenney, R.: Multiscale representations of Markov random fields. IEEE Transactions on Signal Processing 41(12), 3377–3395 (1993)

    Article  MATH  Google Scholar 

  15. McCormick, S.: Multigrid methods. SIAM, Philadelphia (1987)

    Google Scholar 

  16. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)

    Article  Google Scholar 

  17. Paget, R., Longstaff, I.D.: Texture synthesis via a noncausal nonparametric multiscale markov random field. IEEE Transactions on Image Processing 7(6), 925–931 (1998)

    Article  Google Scholar 

  18. Puzicha, J., Buhmann, J.M.: Multiscale annealing for grouping and unsupervised texture segmentation. Computer Vision and Image Understanding: CVIU 76(3), 213–230 (1999)

    Article  Google Scholar 

  19. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic geometry and its applications, 2nd edn. J. Wiley, Chichester (1996)

    Google Scholar 

  20. Stoyan, D., Stoyan, H.: Fractals, random shapes and point fields: Methods of geometrical statistics. J. Wiley, Chichester (1994)

    MATH  Google Scholar 

  21. Swendson, R.H., Wang, J.S.: Nonuniversal critical dynamics in monte carlo simulations. Physical Review Letters 58, 86–88 (1987)

    Article  Google Scholar 

  22. Szu, H., Hartley, R.: Fast simulated annealing. Physics Letters A 122, 157–162 (1987)

    Article  Google Scholar 

  23. Talukdar, M.S., Torsaeter, O., Ionnidis, M.A.: Stochastic recontruction of particulate media from two-dimensional images. Journal of Colloid and Interface Science 248, 419–428 (2002)

    Article  Google Scholar 

  24. Wilson, K., Kogut, J.: The renormalization group and the ε-expansion. Phys. Rep. C12, 75–200 (1974)

    Article  Google Scholar 

  25. Zerubia, J., Kato, Z., Berthod, M.: Multi-temperature annealing: a new approach for the energy-minimization of hierarchical markov random field models. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, Jerusalem, Israel, vol. 1 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alexander, S.K., Fieguth, P., Vrscay, E.R. (2003). Hierarchical Annealing for Random Image Synthesis. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2003. Lecture Notes in Computer Science, vol 2683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45063-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45063-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40498-9

  • Online ISBN: 978-3-540-45063-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics