Skip to main content

Coordinating Multiple Robots with Kinodynamic Constraints along Specified Paths

  • Chapter
Algorithmic Foundations of Robotics V

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 7))

Abstract

This paper focuses on the collision-free coordination of multiple robots with kinodynamic constraints along specified paths. We present an approach to generate continuous velocity profiles for multiple robots that avoids collisions and minimizes the completion time. The approach, which combines techniques from optimal control and mathematical programming, consists of identifying collision segments along each robot’s path, and then optimizing the robots velocities along the collision and collision-free segments. First, for each path segment for each robot, the minimum and maximum possible traversal times that satisfy the dynamics constraints are computed by solving the corresponding two-point boundary value problems. The collision avoidance constraints for pairs of robots can then be combined to formulate a mixed integer nonlinear programming (MINLP) problem. Since this nonconvex MINLP model is difficult to solve, we describe two related mixed integer linear programming (MILP) formulations that provide schedules that are lower and upper bounds on the optimum; the upper bound schedule is designed to be a continuous velocity schedule. The approach is illustrated with coordination of multiple robots, modeled as double integrators subject to velocity and acceleration constraints. Implementation results for coordination of 12 robots are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Akella and S. Hutchinson. Coordinating the motions of multiple robots with specified trajectories. In IEEE International Conference on Robotics and Automation, pages 624–631, Washington, DC, May 2002.

    Google Scholar 

  2. R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi-robot cooperation in the MARTHA project. IEEE Robotics and Automation Magazine, 5 (1): 36–47, Mar. 1998.

    Article  Google Scholar 

  3. B. Aronov, M. de Berg, A. F. van der Stappen, P. Svestka, and J. Vleugels. Motion planning for multiple robots. Discrete and Computational Geometry, 22: 505–525, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential field techniques for robot path planning. IEEE Transactions on Systems, Man, and Cybernetics, 22 (2): 224–241, 1992.

    Article  MathSciNet  Google Scholar 

  5. A. Bicchi and L. Pallottino. On optimal cooperative conflict resolution for air traffic management systems. IEEE Transaction on Intelligent Transportation Systems, 1 (4): 221–231, Dec. 2000.

    Article  Google Scholar 

  6. Z. Bien and J. Lee. A minimum time trajectory planning method for two robots. IEEE Transactions on Robotics and Automation, 8 (3): 414–418, June 1992.

    Article  Google Scholar 

  7. J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control of robotic manipulators along specified paths. International Journal of Robotics Research, 4 (3): 3–17, Fall 1985.

    Google Scholar 

  8. A. E. Bryson and Y.-C. Ho. Applied Optimal Control. Hemisphere, Washington D.C., 1975.

    Google Scholar 

  9. C. Chang, M. J. Chung, and B. H. Lee. Collision avoidance of two robot manipulators by minimum delay time. IEEE Transactions on Systems, Man, and Cybernetics, 24 (3): 517–522, Mar. 1994.

    Article  Google Scholar 

  10. Y. Chen and A. A. Desrochers. A proof of the structure of the minimum-time control law of robotic manipulators using a Hamiltonian formulation. IEEE Transactions on Robotics and Automation, 6 (3): 388–393, June 1990.

    Article  Google Scholar 

  11. B. R. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. Journal of the ACM, 40 (5): 1048–1066, Nov. 1993.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Erdmann and T. Lozano-Perez. On multiple moving objects. Algorithmica, 2 (4): 477–521, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, 1993.

    Google Scholar 

  14. T. Fraichard. Trajectory planning in dynamic workspace: a ‘state-time space’ approach. Advanced Robotics, 13 (l): 75–94, 1999.

    Article  Google Scholar 

  15. T. Fraichard, A. Scheuer, and R. Desvigne. From Reeds and Shepp’s to continuous-curvature paths. In Proceedings of the International Conference on Advanced Robotics, pages 585–590, Tokyo, Japan, Oct. 1999.

    Google Scholar 

  16. J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion planning for multiple independent objects: PSPACE-hardness of the “warehouseman’s problem”. International Journal of Robotics Research, 3 (4): 76–88, 1984.

    Article  Google Scholar 

  17. D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kinodynamic motion planning with moving obstacles. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions, pages 247–264. A. K. Peters, Natick, Massachusetts, 2001.

    Google Scholar 

  18. ILOG, Inc., Incline Village, NV. CPLEX 6.0 Documentation Supplement, 1998.

    Google Scholar 

  19. K. Kant and S. W. Zucker. Toward efficient trajectory planning: The path-velocity decomposition. International Journal of Robotics Research, 5 (3): 72–89, Fall 1986.

    Article  Google Scholar 

  20. G. Knowles. An Introduction to Applied Optimal Control. Mathematics in Science and Engineering, Volume 159. Academic Press, New York, 1981.

    Google Scholar 

  21. J. Kosecka, C. Tomlin, G. Pappas, and S. Sastry. Generation of conflict resolution maneuvers for air traffic management. In IEEE/RSJ International Conference on Robots and Systems, pages 1598–1603, Grenoble, France, 1997.

    Google Scholar 

  22. F. Lamiraux and J.-P. Laumond. Smooth motion planning for car-like vehicles. IEEE Transactions on Robotics and Automation, 17 (4): 498–502, Aug. 2001.

    Article  Google Scholar 

  23. E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast distance queries using rectangular swept sphere volumes. In IEEE International Conference on Robotics and Automation, pages 3719–3726, San Francisco, CA, Apr. 2000.

    Google Scholar 

  24. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Norwell, MA, 1991.

    Book  Google Scholar 

  25. J.-P. Laumond, editor. Robot Motion Planning and Control. Lecture Notes in Control and Information Sciences, No. 229. Springer, 1998.

    Google Scholar 

  26. S. M. LaValle and S. A. Hutchinson. Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation, 14 (6): 912–925, Dec. 1998.

    Article  Google Scholar 

  27. S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. International Journal of Robotics Research, 20 (5): 378–401, May 2001.

    Article  Google Scholar 

  28. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley and Sons, New York, 1988.

    Book  MATH  Google Scholar 

  29. P. A. O’Donnell and T. Lozano-Perez. Deadlock-free and collision-free coordination of two robot manipulators. In IEEE International Conference on Robotics and Automation, pages 484–489, Scottsdale, AZ, May 1989.

    Google Scholar 

  30. L. Pallottino, E. Feron, and A. Bicchi. Conflict resolution problems for air traffic management systems solved with mixed integer programming. IEEE Transactions on Intelligent Transportation Systems, 3 (1): 3–11, Mar. 2002.

    Article  Google Scholar 

  31. M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, En-glewood Cliffs, NJ, 1995.

    MATH  Google Scholar 

  32. J. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In Proceedings of the 26th Annual Symposium on the Foundations of Computer Science, pages 144–154, Portland, Oregon, Oct. 1985.

    Google Scholar 

  33. A. A. Rizzi, J. Gowdy, and R. L. Hollis. Distributed coordination in modular precision assembly systems. International Journal of Robotics Research, 20 (10): 819–838, Oct. 2001.

    Article  Google Scholar 

  34. G. Sahar and J. M. Hollerbach. Planning of minimum-time trajectories for robot arms. International Journal of Robotics Research, 5 (3): 97–140, Fall 1986.

    Google Scholar 

  35. G. Sanchez and J. Latombe. On delaying collision checking in PRM planning — application to multi-robot coordination. International Journal of Robotics Research, 21 (l): 5–26, Jan. 2002.

    Article  Google Scholar 

  36. A. Scheuer and T. Fraichard. Continuous-curvature path planning for carlike vehicles. In Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, volume 2, pages 997–1003, Grenoble, France, Sept. 1997.

    Google Scholar 

  37. T. Schouwenaars, B. D. Moor, E. Feron, and J. How. Mixed integer programming for multi-vehicle path planning. In European Control Conference 2001, Porto, Portugal, 2001.

    Google Scholar 

  38. Z. Shiller and S. Dubowsky. On computing the global time-optimal motion of robotic manipulators in the presence of obstacles. IEEE Transactions on Robotics and Automation, 7 (6): 785–797, Dec. 1991.

    Article  Google Scholar 

  39. K. G. Shin and N. D. McKay. Minimum-time control of robotic manipulators with geometric path constraints. IEEE Transactions on Automatic Control, AC-30(6): 531–541, June 1985.

    Article  MATH  Google Scholar 

  40. K. G. Shin and Q. Zheng. Minimum-time collision-free trajectory planning for dual robot systems. IEEE Transactions on Robotics and Automation, 8 (5): 641–644, Oct. 1992.

    Article  Google Scholar 

  41. T. Simeon, S. Leroy, and J.-P. Laumond. Path coordination for multiple mobile robots: A resolution-complete algorithm. IEEE Transactions on Robotics and Automation, 18 (l): 42–49, Feb. 2002.

    Article  Google Scholar 

  42. C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic management: A study in multi-agent hybrid systems. IEEE Transactions on Automatic Control, 43 (4): 509–521, Apr. 1998.

    Article  MATH  MathSciNet  Google Scholar 

  43. P. Svestka and M.H. Overmars. Coordinated motion planning for multiple carlike robots using probabilistic roadmaps. In IEEE International Conference on Robotics and Automation, pages 1631–1636, Nagoya, Japan, May 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peng, J., Akella, S. (2004). Coordinating Multiple Robots with Kinodynamic Constraints along Specified Paths. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics