Skip to main content

Development of a Parallel Unstructured Multigrid Solver for Laminar Flame Simulations with Detailed Chemistry and Transport

  • Conference paper
Numerical Flow Simulation II

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 75))

Summary

We develop a computer code for steady laminar flame simulations at low Mach numbers, with detailed models for chemical and molecular transport properties. The so called UG-C code is based on the UG library developed at IWR, Heidelberg. With a view to reducing computational time as much as possible, we combine an appropriate low Mach number modelisation with implicit time integration, Krylov-Newton and multigrid preconditioning, on unstructured, dynamically refined grids, with storage optimization of sparse matrices. The code runs on distributed memory parallel machines, with several load balancing algorithms. We show applications to diffusion hydrogen/air and premixed methane/air flames. Multigrid acceleration has been obtained for sufficiently fine grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thévenin, D., Thibaut, D., Piana, J., Veynante, D. and Candel, S., Progress in direct and large-eddy simulations of turbulent combustion, Computation and Visualization of Three-Dimensional Vortical and Turbulent Flows, (Friedrich, R., and Bontoux, P., Eds.), Notes in Numerical Fluid Mechanics, Vieweg Verlag, 64:263–275, 1998.

    Google Scholar 

  2. Thévenin, D. and Baron, R., Investigation of turbulent non-premixed flames using DNS with detailed chemistry, Direct and Large Eddy Simulation III, (yoke, P.R., Sandham, N.D. and Kleiser, L., Eds.), Kluwer Academic Publishers, pp. 323–334, 1999.

    Google Scholar 

  3. Candel, S., Thévenin, D., Darabiha, N. and Veynante, D., Progress in numerical combustion, Combustion Science and Technology, 149: 297–337, 1999.

    Article  Google Scholar 

  4. S. Paxion, A. Gordner, D. Thévenin, P. Bastian, G. Wittum, and S. Candel. Development of a Parallel Multigrid Solver to Investigate Low Mach Number Reactive Flows Using Detailed Chemistry. In 7th Colloquium of the French-German Research Program on Numerical Flow Simulation (Turbulence/Chemistry group), Karlsruhe, 1998.

    Google Scholar 

  5. S.C. Paxion, D. Thévenin, P. Bastian, and S. Candel. Using Multigrid Methods for the Computation of Reactive Flows at Low Mach Numbers. In C.-H. Bruneau, editor, Sixteenth International Conference on Numerical Methods in Fluid Dynamics, pages 536–541, Arcachon, France, 1998. Springer-Verlag.

    Chapter  Google Scholar 

  6. S.C. Paxion, D. Thévenin, P. Bastian, and S. Candel. Towards Low-Mach Number Multigrid Simulations on Distributed-Memory Parallel Computers Using Detailed Chemistry. In 7th International Conference on Numerical Combustion, page 57, York, 1998.

    Google Scholar 

  7. S.C. Paxion, A. Gordner, N. Neuss, P. Bastian, and D. Thévenin. Parallel Multigrid Computations of Steady Laminar Flames at Low Mach Numbers with Detailed Chemistry. In 8th International Symposium on Computational Fluid Dynamics, Bremen, 1999.

    Google Scholar 

  8. S. Paxion, A. Gordner, R. Baron, D. Thévenin, and P. Bastian. Development of a Parallel Multigrid Solver to Investigate Low Mach Number Reactive Flows Using Detailed Chemistry. In 8th Colloquium of the French-German Research Program on Numerical Flow Simulation, Berlin, 1999.

    Google Scholar 

  9. S. Paxion. Développement d’un solveur multigrille non-structuré parallèle pour la simulation de flammes laminaires en chimie et transport complexes. PhD thesis, École Centrale Paris, 1999.

    Google Scholar 

  10. T.P. Coffee. Kinetic Mechanisms for Premixed, Laminar, Steady State Methane/Air Flames. Combust. Flame, 55: 161–170, 1984.

    Article  Google Scholar 

  11. U. Maas and J. Warnatz. Ignition Processes in Carbon-Monoxide-Hydrogen-Oxygen Mixtures. In 22nd Symposium (International) on Combustion, pages 1695–1704. The Combustion Institute, 1988.

    Google Scholar 

  12. R.J. Kee, F.M. Rupley, and J.A. Miller. CHEMKIN-II: a Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics. Technical Report SAND89–8009B, SANDIA, 1991.

    Google Scholar 

  13. J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird. Molecular Theory of Gases and Liquids. John Wiley Sons, New York, 1954.

    MATH  Google Scholar 

  14. S. Chapman and T.G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, 1970.

    Google Scholar 

  15. A. Ern and V. Giovangigli. Fast and Accurate Multicomponent Property Evaluation. Journal of Computational Physics, 120: 105–116, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Em and V. Giovangigli. Optimized Transport Algorithms for Flame Codes. Combust. Sci. Tech., 118: 387–395, 1996.

    Article  Google Scholar 

  17. A. Ern and V. Giovangigli. EGLIB: A General-Purpose Fortran Library for Multicomponent Transport Property Evaluation. Technical report, CERMICS, 1997.

    Google Scholar 

  18. A. Em and V. Giovangigli. Multicomponent Transport Algorithms, volume m24 of Lecture Notes in Physics. Springer-Verlag, Heidelberg, 1994.

    Google Scholar 

  19. A. Ern and V. Giovangigli. Thermal Diffusion Effects in Hydrogen-air and Methane-air Flames. Combust. Theory Modelling, 2: 349–372, 1998.

    Article  MATH  Google Scholar 

  20. V. Giovangigli. Structure et extinction de flammes laminaires prémélangées. PhD thesis, École Centrale Paris, 1988.

    Google Scholar 

  21. V. Giovangigli. Un exemple d’écoulement réactif à cinétique chimique complexe: les flammes laminaires In Ecole de Printemps de Mécanique des Fluides Numérique, Aussois, 1989.

    Google Scholar 

  22. F.A. Williams. Combustion Theory. Addison-Wesley, 2nd edition, 1985.

    Google Scholar 

  23. T. Poinsot and S.K. Lele. Boundary Conditions for Direct Simulations of Compressible Viscous Reacting Flows. Journal of Computational Physics, 101 (1): 104–129, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Braack. An Adaptive Finite Element Method for Reactive-Flow Problems. PhD thesis, Universität Heidelberg, 1998.

    MATH  Google Scholar 

  25. M. Lai, J.B. Bell, and P. Colella. A Projection Method for Combustion in the Zero Mach Number Limit. AIAA Paper, (93–3369), 1993.

    Google Scholar 

  26. R.B. Pember, L.H. Howell, J.B. Bell, P. Colella, W.Y. Crutchfield, W.A. Fiveland, and J.P. Jessee. An Adaptative Projection Method for Unsteady, Low-Mach Number Combustion. Combust. Sci. Tech., 140: 123–168, 1998.

    Article  Google Scholar 

  27. A. Majda and J. Sethian. The Derivation and Numerical Solution of the Equations for Zero Mach Number Combustion. Combust. Sci. Tech., 42: 185–205, 1985.

    Article  Google Scholar 

  28. V. Karlin, G. Makhviladze, and J. Roberts. Numerical Algorithms for Premixed Flames in Closed Channels. In C.-H. Bruneau, editor, Sixteenth International Conference on Numerical Methods in Fluid Dynamics, pages 500–505, Arcachon, France, 1998. Springer-Verlag.

    Chapter  Google Scholar 

  29. L.P.H. de Goey, L.M.T. Somers, W.M.M.L. Bosch, and R.M.M. Mallens. Modeling of the Small Scale Structure of Flat Burner-Stabilized Flames. Combust. Sci. Tech., 104:387–400, 1995.

    Google Scholar 

  30. G.E. Schneider and M.J. Raw. Control Volume Finite-Element Method for Heat Transfer and Fluid Flow Using Colocated Variables. Num. Heat Transfer, 11: 363–390, 1987.

    MATH  Google Scholar 

  31. G.E. Schneider and S.M.H. Karimian. Advances in Control-Volume-Based Finite-Element Methods for Compressible Flows. Computational Mechanics, (14): 431–446, 1994.

    Google Scholar 

  32. N. Neuss. A New Sparse Matrix Storage Method for Adaptative Solving of Large Systems of Reaction-Diffusion-Transport Equations. Technical Report 99–04, IWR, Heidelberg University, 1999.

    Google Scholar 

  33. P. Bastian, K. Birken, K. Johannsen, N. Neuss, H. Rentz-Reichert, and C. Wieners. UG–a Flexible Software Toolbox for Solving Partial Differential Equations. Comp. Vis. Sc., 1: 27–40, 1997.

    Article  MATH  Google Scholar 

  34. P. Bastian, K. Birken, K. Johannsen, S. Lang, V. Reichenberger, C. Wieners, G. Wittum and C. Wrobel: Parallel Solutions of Partial Differential Equations with Adaptive Multigrid Methods on Unstructured Grids. High Performance Computing in Science and Engineering, to appear in 2000.

    Google Scholar 

  35. H. Rentz-Reichert. Robuste Mehrgitterverfahren zur Lösung der inkompressiblen Navier-Stokes Gleichung: Ein Vergleich. PhD thesis, Institut für Computeranwendungen, Universität Stuttgart, 1996.

    Google Scholar 

  36. H.A. Van der Vorst. Bi-CGSTAB: a Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal of Sci. Statist. Comput., 13 (n1): 631–644, 1992.

    Article  MATH  Google Scholar 

  37. P. Bastian. Parallele adaptive Mehrgitterverfahren. PhD thesis, Ruprecht-Karls-Universität Heidelberg, 1994.

    MATH  Google Scholar 

  38. L.M.T. Somers and L.P.H. de Goey. A Numerical Study of a Premixed Flame on a Slit Burner. Combust. Sci. Tech., 108: 121–132, 1995.

    Article  Google Scholar 

  39. T. Dagusé, A. Soufiani, N. Darabiha and J.C. Rolon: Structure of diffusion and premixed laminar counterflow diffusion flames including molecular radiative transfer, Combust. Explos. Shock Waves, 29: 311–315, 1993.

    Article  Google Scholar 

  40. F Aguerre, N. Darabiha, J.C. Rolon and S. Candel: Experimental and numerical study of transient laminar counterflow flames, Combust. Explos. Shock Waves, 29: 306–310, 1993.

    Article  Google Scholar 

  41. F Lacas, N. Darabiha, J.C. Rolon and S. Candel: Laminar counterflow spray diffusion flames–a comparison between experimental results and complex chemistry computations, Combust. Sci. Tech., 90: 35–60, 1993.

    Article  Google Scholar 

  42. F. Aguerre. Étude expérimentale et numérique des flammes laminaires étirées stationnaires et instationnaires. PhD thesis, École Centrale Paris, 1994.

    Google Scholar 

  43. T. Croonenbroek. Diagnostics optiques appliqués aux milieux réactifs. Application aux flammes laminaires étirées à contre-courant. PhD thesis, Paris V I, 1996.

    Google Scholar 

  44. M. Perrin, A. Gamaud, F Lasagni, S. Hasko, M. Fairweather, H. Levinsky, J.-C. Rolon, J.-P. Martin, J. Rolon, A. Soufiani, H. Volpp, T. Dreier, and R. Linstedt. TOPDEC Project: New Tools and Methodology for the Design of Natural Gas Domestic Burners and Boilers. In International Gas Research Conference, San Diego, 1998.

    Google Scholar 

  45. P. Miguel, N. Larass, M. Perrin, R Lasagni, M. Beghi, S. Hasko, M. Fairweather, G. Hargrave, G. Sherwood, H. Levinsky, A. Mokhov, H. de Vries, J.-P. Martin, J.-C. Rolon, L. Brenez, P. Scouflaire, D. Shin, G. Peiter, T. Dreier, and H. Volpp. Detailed Measurements in an Idealized and a Practical Natural Gas Household Boiler. In International Gas Research Conference, San Diego, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paxion, S. et al. (2001). Development of a Parallel Unstructured Multigrid Solver for Laminar Flame Simulations with Detailed Chemistry and Transport. In: Hirschel, E.H. (eds) Numerical Flow Simulation II. Notes on Numerical Fluid Mechanics (NNFM), vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44567-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44567-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07485-1

  • Online ISBN: 978-3-540-44567-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics