Skip to main content

5 Unknown Quantum States and Operations,a Bayesian View

  • Part I Quantum Estimation
  • Chapter
  • First Online:
Quantum State Estimation

Part of the book series: Lecture Notes in Physics ((LNP,volume 649))

Abstract

The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. In this chapter, we motivate and review two results that generalize de Finetti’s theorem to the quantum mechanical setting: Namely a de Finetti theorem for quantum states and a de Finetti theorem for quantum operations. The quantum-state theorem, in a closely analogous fashion to the original de Finetti theorem, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an “unknown quantum state” in quantum-state tomography. Similarly, the quantum-operation theorem gives an operational definition of an “unknown quantum operation” in quantum-process tomography. These results are especially important for a Bayesian interpretation of quantum mechanics, where quantum states and (at least some) quantum operations are taken to be states of belief rather than states of nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. C. M. Caves, C. A. Fuchs, and R. Schack: J. Math. Phys. 43, 4537 (2002).

    Article  MathSciNet  Google Scholar 

  • 2. R. Schack, T. A. Brun, and C. M. Caves: Phys. Rev. A 64, 014305 (2001).

    Google Scholar 

  • 3. C. A. Fuchs, R. Schack, and P. F. Scudo: A de Finetti Representation Theorem for Quantum Process Tomography, to appear in Phys. Rev. A. See also arXiv:quant-ph/0307198.

    Google Scholar 

  • 4. C. A. Fuchs: Quantum States: What the Hell Are They?, posted at http://netlib.bell-labs.com/who/cafuchs.

    Google Scholar 

  • 5. C. M. Caves, C. A. Fuchs and R. Schack: Phys. Rev. A 66, 062111 (2002).

    Article  Google Scholar 

  • 6. C. A. Fuchs: Quantum Mechanics as Quantum Information (and only a little more), arXiv:quant-ph/0205039.

    Google Scholar 

  • 7. E. T. Jaynes, Probability Theory: The Logic of Science, ed by G. L. Bretthorst (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  • 8. B. de Finetti: Erkenntnis 31, 169–223 (1989).

    Google Scholar 

  • 9. B. de Finetti: Theory of Probability (Wiley, New York, 1990).

    Google Scholar 

  • 10. L. J. Savage: The Foundations of Statistics (Dover, New York, 1972).

    Google Scholar 

  • 11. J. M. Bernardo and A. F. M. Smith: Bayesian Theory (Wiley, Chichester, 1994).

    Google Scholar 

  • 12. R. Jeffrey: Subjective Probability (The Real Thing), posted at http://www.princeton.edu/~bayesway/.

    Google Scholar 

  • 13. C. A. Fuchs and A. Peres: Phys. Today 53, 70 (2000); ibid 53, 14 (2000).

    Google Scholar 

  • 14. C. M. Caves, C. A. Fuchs and R. Schack: Phys. Rev. A 65, 022305 (2002).

    Article  Google Scholar 

  • 15. C. M. Caves and C. A. Fuchs: Quantum Information: How Much Information in a State Vector? In: The Dilemma of Einstein, Podolsky and Rosen - 60 Years Later (An International Symposium in Honour of Nathan Rosen - Haifa, March 1995), ed by A. Mann and M. Revzen, Ann. Israel Phys. Soc. 12, 226 (1996).

    Google Scholar 

  • 16. T. A. Brun, C. M. Caves, and R. Schack: Phys. Rev. A 63, 042309 (2001).

    Article  Google Scholar 

  • 17. C. A. Fuchs: J. Mod. Opt. 50, 987 (2003).

    Article  Google Scholar 

  • 18. R. Schack: Found. Phys. 33, 1461 (2003).

    Article  Google Scholar 

  • 19. D. M. Appleby: Facts, Values and Quanta, arXiv:quant-ph/0402015.

    Google Scholar 

  • 20. S. J. van Enk and C. A. Fuchs: Phys. Rev. Lett. 88, 027902 (2002); S. J. van Enk and C. A. Fuchs: Quant. Info. Comp. 2, 151 (2002).

    Article  Google Scholar 

  • 21. C. A. Fuchs: The Anti-Växjö Interpretation of Quantum Mechanics, arXiv:quant-ph/0204146.

    Google Scholar 

  • 22. C. A. Fuchs: Notes on a Paulian Idea: Foundational, Historical, Anecdotal & Forward-Looking Thoughts on the Quantum (Växjö University Press, Växjö, Sweden, 2003). See also arXiv:quant-ph/0105039.

    Google Scholar 

  • 23. A. Peres: Am. J. Phys. 52, 644 (1984).

    Google Scholar 

  • 24. N. D. Mermin: Whose Knowledge? In Quantum (Un)speakables: From Bell to Quantum Information, ed by R. A. Bertlmann and A. Zeilinger (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  • 25. T. A. Brun, J. Finkelstein, and N. D. Mermin: Phys. Rev. A 65, 032315 (2002).

    Article  Google Scholar 

  • 26. N. D. Mermin: J. Math. Phys. 43, 4560 (2002).

    Article  Google Scholar 

  • 27. R. W. Spekkens: In Defense of the Epistemic View of Quantum States: A Toy Theory, arXiv:quant-ph/0401052; L. Hardy: Quantum Theory From Five Reasonable Axioms, arXiv:quant-ph/0101012; O. Cohen: Classical Teleportation of Classical States, arXiv:quant-ph/0310017; R. Duvenhage: Found. Phys. 32, 1399 (2002); P. G. L. Mana: Why Can States and Measurement Outcomes Be Represented as Vectors?, arXiv:quant-ph/0305117; A. Duwell, Quantum Information Does Not Exist, Stud. Hist. Phil. Mod. Phys. 34, 479 (2003); I. Pitowski: Stud. Hist. Phil. Mod. Phys. 34, 395 (2003); R. Clifton, J. Bub, and H. Halvorson: Found. Phys. 33, 1561 (2003); J. Bub: Why the Quantum?, to appear in Stud. Hist. Phil. Mod. Phys., see also arXiv:quant-ph/0402149; D. M. Appleby: The Bell-Kochen-Specker Theorem, arXiv:quant-ph/0308114.

    Article  Google Scholar 

  • 28. C. H. Bennett G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters: Phys. Rev. Lett. 70, 1895 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  • 29. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu: Phys. Rev. Lett. 80, 1121 (1998); D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger: Nature 390, 575 (1997); A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik: Science 282, 706 (1998).

    Article  MathSciNet  Google Scholar 

  • 30. P. W. Shor: Phys. Rev. A 52, R2493 (1995).

    Google Scholar 

  • 31. A. M. Steane: Phys. Rev. Lett. 77, 793 (1996).

    Article  Google Scholar 

  • 32. C. H. Bennett and G. Brassard: Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proc. IEEE International Conference on Computers, Systems and Signal Processing (IEEE Press, New York, 1984) p. 175; C. H. Bennett: Phys. Rev. Lett. 68, 3121 (1992).

    Article  Google Scholar 

  • 33. A. Muller, H. Zbinden, and N. Gisin: Nature 378, 449 (1995); W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998); R. J. Hughes, G. L. Morgan, and C. G. Peterson: J. Mod. Opt. 47, 533 (2000).

    Article  Google Scholar 

  • 34. K. Vogel and H. Risken: Phys. Rev. A 40, 2847 (1989).

    Article  Google Scholar 

  • 35. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani: Phys. Rev. Lett. 70, 1244 (1993).

    Article  Google Scholar 

  • 36. U. Leonhardt: Phys. Rev. Lett. 74, 4101 (1995).

    Article  Google Scholar 

  • 37. Q. A. Turchette et al.: Phys. Rev. Lett. 75, 4710 (1995).

    Article  Google Scholar 

  • 38. I. L. Chuang and M. A. Nielsen: J. Mod. Opt. 44, 2455 (1997).

    Article  Google Scholar 

  • 39. J. F. Poyatos, J. I. Cirac, and P. Zoller: Phys. Rev. Lett. 78, 390 (1997).

    Article  Google Scholar 

  • 40. G. M. D’Ariano, P. Lo Presti, Phys. Rev. Lett. 86, 4195 (2001). See also Chap. 8 of this volume.

    Google Scholar 

  • 41. H. E. Kyburg, Jr. and H. E. Smokler, eds, Studies in Subjective Probability, 2nd edn (Robert E. Krieger Publishing, Huntington, NY, 1980).

    Google Scholar 

  • 42. For a collection of de Finetti’s original papers and their translations into English, see P. Monari and D. Cocchi, eds, Probabilità e Induzione—Induction and Probability (Biblioteca di Statistica, CLUEB, Bologna, 1993).

    Google Scholar 

  • 43. R. L. Hudson and G. R. Moody: Z. Wahrschein. verw. Geb. 33, 343 (1976).

    Google Scholar 

  • 44. R. L. Hudson: Found. Phys. 11, 805 (1981).

    Google Scholar 

  • 45. D. Petz: Prob. Th. Rel. Fields 85, 1 (1990); A. Bach: Europhys. Lett. 16, 513 (1991); L. Accardi and Y. G. Lu: Ann. Prob. 21, 1478 (1993); A. Bach: Indistinguishable Classical Particles, Lecture Notes in Mathematics, New Series, vol 44 (Springer, Berlin, 1997); R. L. Hudson: Int. J. Quant. Chem. 74, 595 (1999).

    Google Scholar 

  • 46. C. A. Fuchs and K. Jacobs: Phys. Rev. A 63, 062305 (2001).

    Article  Google Scholar 

  • 47. D. Heath and W. Sudderth: Am. Stat. 30, 188 (1976).

    Google Scholar 

  • 48. L. Daston: Hist. Math. 21, 330 (1994).

    Article  Google Scholar 

  • 49. T. A. Bass: The Newtonian Casino (Penguin Books, London, 1991), previously published as The Eudaemonic Pie: Or why Would Anyone Play Roulette without a Computer in His Shoe (Houghton Mifflin, New York, 1985).

    Google Scholar 

  • 50. R. N. Giere: Objective Single-Case Probabilities and the Foundations of Statistics. In Logic, Methodology and Philosophy of Science IV, ed by P. Suppes, L. Henkin, A. Jojo, and G. C. Moisil (North-Holland, Amsterdam, 1973) p. 467.

    Google Scholar 

  • 51. J. S. Bell: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge U. Press, Cambridge, 1987).

    Google Scholar 

  • 52. J. T. Cushing, A. Fine, and S. Goldstein, eds, Bohmian Mechanics and Quantum Theory: An Appraisal (Kluwer, Dordrecht, 1996).

    Google Scholar 

  • 53. E. T. Jaynes: Some Applications and Extensions of the de Finetti Representation Theorem. In Bayesian Inference and Decision Techniques, ed by P. Goel and A. Zellner (Elsevier, Amsterdam, 1986) p. 31.

    Google Scholar 

  • 54. A. Peres: Phys. Rev. A 61, 022116 (2000).

    Article  Google Scholar 

  • 55. V. Scarani, W. Tittel, H. Zbinden, and N. Gisin: Phys. Lett. A 276, 1 (2000).

    Article  MathSciNet  Google Scholar 

  • 56. E. Schrödinger: Proc. Cam. Philo. Soc. 32, 446 (1936).

    Google Scholar 

  • 57. E. T. Jaynes: Phys. Rev. 108, 171 (1957).

    Article  Google Scholar 

  • 58. L. P. Hughston, R. Jozsa, and W. K. Wootters: Phys. Lett. A 183, 14 (1993).

    Article  MathSciNet  Google Scholar 

  • 59. E. Størmer: J. Func. Anal. 3, 48 (1969).

    Article  Google Scholar 

  • 60. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters: Phys. Rev. A 54, 3824 (1996).

    Article  MathSciNet  Google Scholar 

  • 61. N. D. Mermin: Phys. Today 43, 9 (1990).

    Google Scholar 

  • 62. M. Koashi, V. Bužek, and N. Imoto: Phys. Rev. A 62, 050302 (2000).

    Article  Google Scholar 

  • 63. E. B. Davies and J. T. Lewis: Comm. Math. Phys. 17, 239 (1970).

    Google Scholar 

  • 64. K. Kraus, States, Effects, and Operations. Fundamental Notions of Quantum Theory, Lect. Notes Phys. 190 (1983).

    Google Scholar 

  • 65. A. Peres: Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993).

    Google Scholar 

  • 66. E. Merzbacher: Quantum Mechanics, 2nd edn (Wiley, New York, 1970); C. Cohen-Tannoudji: Quantum Mechanics, 2nd revised enlarged edition (Wiley, New York, 1977).

    Google Scholar 

  • 67. J. von Neumann: Mathematical Foundations of Quantum Mechanics, translated by T. A. Beyer (Princeton U. Press, Princeton, 1955); P. A. M. Dirac: The Principles of Quantum Mechanics, 4th edn (Oxford University Press, Oxford, 1958).

    Google Scholar 

  • 68. A. S. Holevo: Prob. Info. Trans. 9, 110 (1973).

    Google Scholar 

  • 69. E. Prugovečki: Int. J. Theo. Phys. 16, 321 (1977).

    Google Scholar 

  • 70. G. M. D’Ariano, P. Perinotti, M. F. Sacchi: Informationally complete measurements and groups representation, arXiv:quant-ph/0310013.

    Google Scholar 

  • 71. J. M. Renes, R. Blume-Kohout, A. J. Scott, C. M. Caves: Symmetric Informationally Complete Quantum Measurements to appear in J. Math. Phys. (2004); see also arXiv:quant-ph/0310075.

    Google Scholar 

  • 72. For a small sampling of more recent considerations, see: G. M. D’Ariano, L. Maccone, and M. G. A. Paris: J. Phys. A 34, 93 (2001); S. Weigert: Phys. Rev. Lett. 84, 802 (2000); V. Bužek, G. Drobný, R. Derka, G. Adam, and H. Wiedemann: Chaos Sol. Fract. 10, 981 (1999).

    Google Scholar 

  • 73. This question appears to have been considered much earlier than the current interest: W. Band and J. L. Park: Found. Phys. 1, 133 (1970); J. L. Park and W. Band: Found. Phys. 1, 211 (1971); W. Band and J. L. Park: Found. Phys. 1, 339 (1971).

    Google Scholar 

  • 74. A. Fujiwara and H. Nagaoka: IEEE Trans. Inf. Theory 44, 1071 (1998).

    Article  Google Scholar 

  • 75. One can get a feeling for this from the large review article, D. J. Aldous: Exchangeability and Related Topics. In École d’Été de Probabilités de Saint-Flour XIII – 1983, ed by P. L. Hennequin, Lecture Notes in Mathematics vol 1117 (Springer-Verlag, Berlin, 1985) pp. 1–198.

    Google Scholar 

  • 76. P. Diaconis: Synthese 36, 271 (1977); P. Diaconis and D. Freedman: Ann. Prob. 8, 745 (1980).

    Google Scholar 

  • 77. G. G. Emch: Is There a Quantum de Finetti Programme? In Proceedings of the Conference: Foundations of Probability and Physics – 2, ed by A. Khrennikov (Växjö University Press, Växjö, Sweden, 2002) pp. 159–178.

    Google Scholar 

  • 78. H.-K. Lo, H. F. Chau, and M. Ardehali: Efficient Quantum Key Distribution Scheme And Proof of Its Unconditional Security, arXiv:quant-ph/0011056.

    Google Scholar 

  • 79. K. Tamaki, M. Koashi, and N. Imoto: Phys. Rev. Lett. 90, 167904 (2003).

    Article  Google Scholar 

  • 80. M. A. Nielsen and I. L. Chuang: Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  • 81. M. A. Nielsen, E. Knill, and R. Laflamme: Nature 396, 52 (1998).

    Article  MATH  Google Scholar 

  • 82. A. M. Childs, I. L. Chuang, and D. W. Leung: Phys. Rev. A 64, 012314 (2001).

    Article  Google Scholar 

  • 83. Y. Nambu et al.: Experimental Investigation of Pulsed Entangled Photons and Photonic Quantum Channels. In Quantum Optics in Computing and Communications, Proceedings of SPIE, vol 4917, ed by S. Liu, G. Guo, H.-K. Lo, and N. Imoto (2002), pp. 13–24; e-print arXiv:quant-ph/0210147.

    Google Scholar 

  • 84. J. B. Altepeter et al.: Phys. Rev. Lett. 90, 193601 (2003).

    Article  Google Scholar 

  • 85. F. De Martini, A. Mazzei, M. Ricci, and G. M. D’Ariano: Phys. Rev. A 67, 062307 (2003).

    Article  Google Scholar 

  • 86. D. W. Leung: Towards Robust Quantum Computation. PhD thesis, Stanford University (2000); e-print cs.CC/0012017.

    Google Scholar 

  • 87. D. W. Leung: J. Math. Phys. 44, 528 (2003).

    Article  Google Scholar 

  • 88. W. Dür and J. I. Cirac: Phys. Rev. A 64, 012317 (2001).

    Article  Google Scholar 

  • 89. G. M. D’Ariano and P. Lo Presti: Phys. Rev. Lett. 86, 4195 (2001).

    Article  Google Scholar 

  • 90. M.-D. Choi: Lin. Alg. App. 10, 285 (1975).

    Article  Google Scholar 

  • 91. G. M. D’Ariano and P. Lo Presti: Imprinting a Complete Information about a Quantum Channel on Its Output State, arXiv:quant-ph/0211133; K. Życzkowski and I. Bengtsson: On duality between Quantum Maps and Quantum States, arXiv:quant-ph/0401119; P. Arrighi and C. Patricot: On Quantum Operations as Quantum States, arXiv:quant-ph/0307024; J. Oppenheim and B. Reznik: A Probabilistic and Information Theoretic Interpretation of Quantum Evolutions, arXiv:quant-ph/0312149; A. Fujiwara and P. Algoet, Phys. Rev. A 59, 3290–3294 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Matteo Paris Jaroslav Řeháček

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Fuchs, C.A., Schack, R. 5 Unknown Quantum States and Operations,a Bayesian View. In: Paris, M., Řeháček, J. (eds) Quantum State Estimation. Lecture Notes in Physics, vol 649. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44481-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44481-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22329-0

  • Online ISBN: 978-3-540-44481-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics