Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2850))

Abstract.

We propose to regard a diagnostic system as an ordered logic theory, i.e. a partially ordered set of clauses where smaller rules carry more preference. This view leads to a hierarchy of the form \(\textit{observations} < \textit{system description} < \textit{fault model}\), between the various knowledge sources. It turns out that the semantics for ordered logic programming nicely fits this intuition: if the observations contradict the normal system behavior, then the semantics will provide an explanation from the fault rules. The above model can be refined, without adding additional machinery, to support e.g. problems where there is a clear preference among possible explanations or where the system model itself has a complex structure. Interestingly, these extensions do not increase the complexity of the relevance or necessity decision problems. Finally, the mapping to ordered logic programs also provides a convenient implementation vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artificial Intelligence 109(1-2), 297–356 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Buccafurri, F., Faber, W., Leone, N.: Disjunctive logic programs with inheritance. In: De Schreye, D. (ed.) Logic Programming: The 1999 International Conference, Las Cruces, New Mexico, December 1999, pp. 79–93. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagnosis. Computational Intelligence 7(3), 133–141 (1991)

    Article  Google Scholar 

  4. Cox, P.T., Pietrzykowski, T.: General diagnosis by abductive inference. In: Proceedings of the IEEE Symposium on Logic Programming, pp. 183–189 (1987)

    Google Scholar 

  5. De Kleer, J.: Local methods for localizing faults in electronic circuits. MIT AI Memo (394)

    Google Scholar 

  6. De Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and systems. Artificial Intelligence 52, 197–222 (1992)

    Google Scholar 

  7. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv system. AI Communications 12(1-2), 99–111 (1999)

    MathSciNet  Google Scholar 

  8. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. Journal of the Association for Computing Machinery 42(1), 3–42 (1995)

    MATH  MathSciNet  Google Scholar 

  9. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: Semantics and complexity. Theoretical Computer Science 189(1-2), 129–177 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eiter, T., Gottlob, G., Leone, N.: Semantics and complexity for abduction from default logic. Artificial Intelligence 90(1-2), 177–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In: Proceedings of the 6th International Conference on Logic Programming, pp. 234–254. MIT Press, Cambridge (1989)

    Google Scholar 

  12. Friedrich, G., Gottlob, G., Nejdl, W.: Hypothesis classification, abductive diagnosis and therapy. In: Gottlob, G., Nejdl, W. (eds.) Expert Systems in Engineering. LNCS, vol. 462, pp. 69–78. Springer, Heidelberg (1990)

    Google Scholar 

  13. Gelfond, M.: Epistemic approach to formalization of commonsense reasoning. Technical report, University of Texas at El Paso, Technical Report TR-91-2 (1991)

    Google Scholar 

  14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, August 1988, pp. 1070–1080. The MIT Press, Cambridge (1988)

    Google Scholar 

  15. Inoue, K., Sakama, C.: Transforming abductive logic programs to disjunctive programs. In: Proceedings of the 10th International Conference on Logic Programming, pp. 335–353. MIT Press, Cambridge (1993)

    Google Scholar 

  16. Inoue, K., Sakama, C.: A fixpoint characterization of abductive logic programs. Journal of Logic Programming 27(2), 107–136 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. Journal of Logic and Computation 2(6), 719–770 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Laenens, E., Vermeir, D.: Assumption-free semantics for ordered logic programs: On the relationship between well-founded and stable partial models. Journal of Logic and Computation 2(2), 133–172 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lifschitz, V.: Answer set programming and plan generation. Journal of Artificial Intelligence 138(1-2), 39–54 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Macartney, F.J.: Diagnostic logic. Logic in Medicine (1988)

    Google Scholar 

  21. Peng, Y., Reggia, J.: Abductive inference models for diagnostic problem solving. Symbolic Computation - Artificial Intelligence (1990)

    Google Scholar 

  22. Poole, D.: Explanation and prediction: An architecture for default and abductive reasoning. Computational Intelligence 5(1), 97–110 (1989)

    Article  MathSciNet  Google Scholar 

  23. Preist, C., Eshghi, K., Bertolino, B.: Consistency-based and abductive diagnosis as generalized stable models. Annals of Mathematics and Artificial Intelligence 11, 51–74 (1994)

    Article  MATH  Google Scholar 

  24. Reggia, J.A., Nau, D.S., Wang, Y.: Diagnostic expert systems based on a set covering model. International Journal of Man Machine Studies (19), 437–460 (1983)

    Google Scholar 

  25. Reiter, R.: Atheory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sakama, C., Inoue, K.: On the equivalence between disjunctive and abductive logic programs. In: Van Hentenryck, P. (ed.) Logic Programming, Proceedings of the Eleventh International Conference on Logic Programming, Santa Margherita Ligure, Italy, June 1994, pp. 489–503. MIT Press, Cambridge (1994)

    Google Scholar 

  27. Sakama, C., Inoue, K.: Representing priorities in logic programs. In: Maher, M.J. (ed.) Proceedings of the 1996 Joint International Conference and Syposium on Logic Programming, Bonn, September 1996, pp. 82–96. MIT Press, Cambridge (1996)

    Google Scholar 

  28. Sakama, C., Inoue, K.: Abductive logic programming and disjunctive logic programming: their relationship and transferability. The Journal of Logic Programming 44(1-3), 71–96 (2000)

    Article  MathSciNet  Google Scholar 

  29. Shortliffe, E.H.: Computer-based medical consultations: Mycin (1976)

    Google Scholar 

  30. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. Journal of the Association for Computing Machinery 23(4), 733–742 (1976)

    MATH  MathSciNet  Google Scholar 

  31. Van Nieuwenborgh, D., Vermeir, D.: Order and negation as failure (accepted)

    Google Scholar 

  32. Van Nieuwenborgh, D., Vermeir, D.: Ordered diagnosis. Technical report, Vrije Universiteit Brussel, Dept. of Computer Science (2003)

    Google Scholar 

  33. Van Nieuwenborgh, D., Vermeir, D.: Preferred answer sets for ordered logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 432–443. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  34. Wang, K., Zhou, L., Lin, F.: Alternating fixpoint theory for logic programs with priority. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 164–178. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Nieuwenborgh, D., Vermeir, D. (2003). Ordered Diagnosis. In: Vardi, M.Y., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2003. Lecture Notes in Computer Science(), vol 2850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39813-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39813-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20101-4

  • Online ISBN: 978-3-540-39813-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics