Skip to main content

Waveguide Fabrication Techniques

  • Chapter

Part of the book series: Advanced Texts in Physics ((ADTP))

Abstract

In Chap. 3, the theoretical considerations relevant to various types of waveguides were discussed. In every case, waveguiding depended on the difference in the index of refraction between the waveguiding region and the surrounding media. A great many techniques have been devised for producing that required index difference. Each method has particular advantages and disadvantages, and no single method can be said to be clearly superior. The choice of a specific technique of waveguide fabrication depends on the desired application, and on the facilities available. In this Chapter, various methods of waveguide fabrication are reviewed, and their inherent features are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.K. Tien: Appl. Opt. 10, 2395 (1971)

    Article  ADS  Google Scholar 

  2. K.E. Wilson, E. Garmire, R.M. Silva, W.K. Stowell: J. Opt. Soc. Am. 71, 1560 (1981)

    Article  ADS  Google Scholar 

  3. R. Behrisch (ed.): Sputtering by Particle Bombardment I, Topics Appl. Phys., Vol. 47 ( Springer, Berlin, Heidelberg 1981 )

    Google Scholar 

  4. F. Zernike: Fabrication and measurement of passive components, in Integrated Optics, ed. by T. Tamir, 2nd edn., Topics Appl. Phys., Vol. 7 ( Springer, Berlin, Heidelberg 1979 )

    Google Scholar 

  5. J.D. Plummer, J.D. Deal, P.B. Griffin: Silicon VLSI Technology ( Prentice Hall, Upper Saddle River, NJ 2000 ) pp. 539–555

    Google Scholar 

  6. A.B. Glaser, G.E. Subak-Sharpe: Integrated Circuit Engineering ( Addison-Wesley, Reading, MA 1977 ) pp. 169–181

    Google Scholar 

  7. B.J.H. Stadler, A. Gopinath: Magneto-optical garnet films made by reactive sputtering. IEEE Transactions on Magnetics 36, 3957 (2000)

    Article  ADS  Google Scholar 

  8. Y.B. Choi, S.J. Park, K.S. Shin, K.T. Jeong, S.H. Cho, D.C. Moon: The planar light waveguide type optical amplifier fabricated by sputtering method. APCC/OECC’99. Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference, Volume: 2 (1999) pp. 1634–1635

    Google Scholar 

  9. T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori: Neodymium-doped silica-based planar waveguide lasers. IEEE J Lightwave Technology 12, 436 (1994)

    Article  ADS  Google Scholar 

  10. M.P. Roe, M. Hempstead, J.L. Archambault, P.St.J. Russell, L. Dong: Strong photo-induced refractive index changes in RF-sputtered tantalum oxide planar waveguides. Conference on Lasers and Electro-Optics Europe (1994) p. 67

    Google Scholar 

  11. T.H. Hoekstra, P.V. Lambeck, H. Albers, T.J.A. Popma: Sputter-deposited erbium-doped yttrium oxide active optical waveguides. Electronics Letters 29, 581 (1993)

    Article  Google Scholar 

  12. D. Ostrowsky. A. Jaques: Appl. Phys. Lett. 18, 556 (1971)

    Article  ADS  Google Scholar 

  13. K. Enbutsu, M. Hikita, S. Tomaru, M. Usui, S. Imamura, T. Maruno: Multimode optical waveguide fabricated by UV cured epoxy resin for optical interconnection. APCC/OECC’99. Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference, Volume: 2 (1999) pp. 1648–1651

    Google Scholar 

  14. T. Sosnowski, H. Weber: Appl. Phys. Lett. 21, 310 (1972)

    Article  ADS  Google Scholar 

  15. D.A. Ramey. J.T. Boyd: IEEE Trans. CAS-26, 1041 (1979)

    Google Scholar 

  16. R. Reuter, H. Franke, C. Feger: Appl. Opt. 27, 4565 (1988)

    Article  ADS  Google Scholar 

  17. C.T. Sullivan: SPIE Proc. 994, 92 (1988)

    Article  Google Scholar 

  18. A. Neyer, T. Knoche, L. Müller: Electron. Lett. 29, 399 (1993)

    Article  Google Scholar 

  19. D.P. Prakash. D. v. Plant, D. Zhang, H.R. Fetterman: SPIE Proc. 1774, 118 (1993)

    ADS  Google Scholar 

  20. P.K. Tien, G. Smolinsky, R. Martin: Appl. Opt. 11, 637 (1972)

    Article  ADS  Google Scholar 

  21. S.A. Campbell: The Science and Engineering of Microelectronic Fabrication, 2nd ed. ( Oxford, New York 2001 ) pp. 39–65

    Google Scholar 

  22. J.L. Jackel, V. Ramaswamy, S.P. Lyman: Appl. Phys. Lett. 38, 509 (1981)

    Article  ADS  Google Scholar 

  23. M.N. Armenese, M. DeSario: J. Opt. Soc. Am. 72, 1514 (1982)

    Article  ADS  Google Scholar 

  24. L. McCaughan, E.J. Murphy: J. Opt. Soc. Am. 72, 1821 (1982)

    ADS  Google Scholar 

  25. J. Hukriede, D. Kip, E. Krataig: Photorefraction and thermal fixing in channel wave-guides fabricated in lithium niobate by titanium and copper indiffusion. Conference Digest IEEE Conference on Lasers and Electro-Optics Europe (2000)

    Google Scholar 

  26. H.F. Taylor, W.E. Martin, D.B. Hall, V.N. Smiley: Appl. Phys. Lett. 21, 325 (1972)

    Article  ADS  Google Scholar 

  27. W.E. Martin, D.B. Hall: Appl. Phys. Lett. 21, 325 (1972)

    Article  ADS  Google Scholar 

  28. E.M. Zolatov. V.A. Kiselyav, A.M. Prokhorov, E.A. Sacherbakov: Determination of characteristics of diffused optical waveguides. OSA Topical Meeting on Integrated Optics, Salt Lake City, UT (1978)

    Google Scholar 

  29. B.L. Booth: Optical interconnection polymers, in Polymers for Lightwave and Integrated Optics: Techniques and Applications, ed. by L.A. Hornak ( Dekker, New York 1992 ) p. 232

    Google Scholar 

  30. T. Izawa, H. Nakagome: Appl. Phys. Lett. 21, 584 (1972)

    Article  ADS  Google Scholar 

  31. R.C. Alfernes: Titanium-diffused lithium niobate waveguide devices, in Guided-Wave Optoelectronics,ed. by T. Tamir, 2nd edn., Springer Ser. Electron. Photon., Vol. 26 (Springer, Berlin, Heidelberg 1990) pp. 145–206, in particular, p. 148

    Google Scholar 

  32. A. Tervonen, S. Honkanen, P. Poyhonen, M. Tahkokorpi: SPIE Proc. 1794, 264 (1993)

    Article  ADS  Google Scholar 

  33. P. Masalkar, V. Rao, R. Sirohi: SPIE Proc. 1794, 271 (1993)

    Article  ADS  Google Scholar 

  34. D.F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, N. Peyghambarian: lon-exchanged waveguide add/drop filter. Electronics Letters 37, 829 (2001)

    Google Scholar 

  35. B. Buchold, E. Voges: Planar arrayed-waveguide grating multi/demultiplexers based on ion-exchanged waveguides in glass. IEE Colloquium on WDM Technology and Applications (Digest No. 1997/036) (1997) pp. 10/1–10/5

    Google Scholar 

  36. D. Nir, S. Ruschin, A. Hardy, D. Brooks: Proton-exchanged periodically segmented channel waveguides in lithium niobate. Electronics Letters 31, 186 (1995)

    Article  Google Scholar 

  37. H. Ryssel, H. Glawisching (eds.): Ion Implantation, Springer Ser. Electrophys., Vols. 10 and 11 (Springer, Berlin, Heidelberg 1982 and 1983 )

    Google Scholar 

  38. W.S. Johnson, J.F. Gibbons: Projected Range Statistics in Semiconductors (Stanford Univ. Press, Stanford, CA 1969 )

    Google Scholar 

  39. R. Standley, W.M. Gibson, J.W. Rodgers: Appl. Opt. 11, 1313 (1972)

    Article  ADS  Google Scholar 

  40. E. Garmire, H. Stoll, A. Yariv, R.G. Hunsperger: Appl. Phys. Lett. 21, 87 (1972)

    Article  ADS  Google Scholar 

  41. M.A. Mentzer, R.G. Hunsperger. S. Sriram, J. Bartko, M.S. Wlodawski, J.M. Zavada, H.A. Jenkinson: Opt. Eng. 24, 225 (1985)

    Article  Google Scholar 

  42. M. Bamoski, R.G. Hunsperger, R. Wilson, G. Tangonan: J. Appl. Phys. 44, 1925 (1973)

    Article  ADS  Google Scholar 

  43. J. Zavada, H. Jenkinson, T. Gavanis. R.G. Hunsperger, M. Mentzer, D. Larson, J. Comas: SPIE Proc. 239, 157 (1980)

    Article  Google Scholar 

  44. J.P. Donnelley, A.G. Foyt, W.T. Lindley, G.W. Iseler: Solid State Electron. 13, 755 (1970)

    Article  ADS  Google Scholar 

  45. R.M. Alien, British Embassy, Washinton, DC 20008: Priv. Commun. (1976)

    Google Scholar 

  46. P. Bhattacharya: Semiconductor Optoelectronic Devices (Prentice-Hall, Englewood Cliffs, NJ 1944 ) pp. 133–137, 294–299

    Google Scholar 

  47. E. Garnire: Semiconductor components for monolithic applications, in Integrated Optics,ed. by T. Tamir, 2nd edn., Topics Appl. Phys., Vol. 7 (Springer, Berlin, Heidelberg 1979) Chap. 6, in particular, pp. 293–301

    Google Scholar 

  48. T. Moss, G. Hawkins: Infrared Phys. 1, 111 (1961)

    Article  ADS  Google Scholar 

  49. D. Hill: Phys. Rev. A 133, 866 (1963)

    Google Scholar 

  50. J. Shah, B.I. Miller, A.E. DiGiovanni: J. Appl. Phys. 43, 3436 (1972)

    Article  ADS  Google Scholar 

  51. J.T. Boyd: IEEE J. QE-8, 788 (1972)

    Google Scholar 

  52. H.C. Casey Jr., D.D. Sell, M.B. Panish: Appl. Phys. Lett. 24, 633 (1974)

    Article  Google Scholar 

  53. V. Evtuhov, A. Yariv: IEEE Trans. MTT-23, 44 (1975)

    Google Scholar 

  54. Zn.I. Alferov, V.M. Andreev, E.L. Portnoi, M.K. Trukn: Sov. Phys. — Semiconductors 3, 1107 (1970)

    Google Scholar 

  55. J.H. McFee, R.H. Nahory, M.A. Pollack, R.A. Logan: Appl. Phys. Lett. 23, 571 (1973)

    Article  ADS  Google Scholar 

  56. F.K. Reinhart, R.A. Logan, T.P. Lee: Appl. Phys. Lett. 24, 270 (1974)

    Article  ADS  Google Scholar 

  57. S.M. Jensen, M.K. Barnoski. R.G. Hunsperger. G.S. Kamath: J. Appl. Phys. 46, 3547 (1975)

    Article  ADS  Google Scholar 

  58. M.G. Craford. W.O. Groves: IEEE Proc. 61, 862 (1973)

    Article  Google Scholar 

  59. S. Kamath: Epitaxial GaAs-(GaAI)As layers for integrated optics. OSA Topical Meeting on Integrated Optics, New Orleans, LA (1974)

    Google Scholar 

  60. H. Kressel (ed.): Semiconductor Devices for Optical Communication, 2nd edn., Topics Appl. Phys., Vol. 39 ( Springer, Berlin, Heidelberg 1982 )

    Google Scholar 

  61. C.M. Wolfe, G.E. Stillman, M. Meingallis: Epitaxial growth of InGaAs-GaAs for integrated optics. OSA Topical Meeting on Integrated Optics, New Orleans, LA (1974)

    Google Scholar 

  62. M. Kawabe: Appl. Phys. Lett. 26, 46 (1975)

    Article  ADS  Google Scholar 

  63. K. Nakajimi, A. Yamaguch, K. Akita, T. Kotani: J. Appl. Phys. 49, 5944 (1979)

    Article  ADS  Google Scholar 

  64. R.U. Martinelli: LEOS’88, Santa Clara, CA (1988) Digest p. 55

    Google Scholar 

  65. M.R.T. Pearson, P.E. Jessop, D.M. Bruce, S. Wallace, P. Mascher, J. Ojha: Fabrication of SiGe optical waveguides using VLSI processing techniques. IEEE J. Lightwave Tech. 19, 363 (2001)

    Article  ADS  Google Scholar 

  66. A.A. Chernov (ed.): Modern Crystallography III, Crystal Growth, Springer Ser. Solid-State Sci., Vol. 36 ( Springer, Berlin, Heidelberg 1984 )

    Google Scholar 

  67. K. Ploog, K. Graf: Molecular Beam Epitaxy of III-V compounds, a Comprehensive Bibliography 1958–1983 ( Springer, Berlin, Heidelberg 1984 )

    Google Scholar 

  68. M.A. Herman, H. Sitter: Molecular Beam Epitaxy, 2nd edn., Springer Ser. Mater. Sci., Vol. 7 ( Springer, Berlin, Heidelberg 1996 )

    Google Scholar 

  69. W.T. Tsang: Appl. Phys. Lett. 38, 587 (1981)

    Article  ADS  Google Scholar 

  70. J.C.M. Hwang, J.V. DiLorenzo, P.E. Luscher, W.S. Knodle: Solid State Techn. 25, 166 (1982)

    Google Scholar 

  71. C. Goldstein, C. Stark, J. Emory, F. Gaberit, D. Bonnevie, F. Poingt, M. Lambert: J. Crystal Growth 120, 157 (1992)

    Article  ADS  Google Scholar 

  72. R.G. Walker, R.C. Goodfellow: Electron. Lett. 19, 590 (1983)

    Article  Google Scholar 

  73. T. Matsumoto, P. Bhattacharya, M.J. Ludowise: Appl. Phys. Lett. 42, 52 (1983)

    Article  ADS  Google Scholar 

  74. H. Ishiguro, T. Kawabata, S. Koike: Appl. Phys. Lett. 51, 12 (1987)

    Article  Google Scholar 

  75. H. Jvergensen: Microelectron. Eng. 18, 119 (1992)

    Article  Google Scholar 

  76. A. Yariv: Optical Electronics, 4th edn. ( Holt, Rinehart and Winston, New York 1991 ) pp. 309–316

    Google Scholar 

  77. B.G. Streetman: Solid State Electronic Devices, 3rd edn. ( Prentice-Hall, Englewood Cliffs. NJ 1990 ) p. 147

    Google Scholar 

  78. S.A. Campbell: The Science and Engineering of Microelectronic Fabrication, 2nd ed. ( Oxford, New York, 2001 ) pp. 68–95

    Google Scholar 

  79. C. Boulas, S. Valette, E. Parrens, A. Fournier: Low loss multimode waveguides on silicon substrate. Electronics Letters 28, 1648 (1992)

    Article  Google Scholar 

  80. Q. Lai, P. Pliska, J. Schmid, W. Hunziker, H. Melchior: Formation of optical slab waveguides using thermal oxidation of SiO2. Electronics Lett. 29, 1648 (1992)

    Google Scholar 

  81. Y. Luo, D.C. Hall, L. Kou, O. Bium, H. Hou, L. Steingart, J.H. Jackson: Optical properties of AlGaAs heterostructure native oxide planar waveguides LEOS’99 IEEE Lasers and Electro-Optics Society 12th Annual Meeting, Volume: 1 (1999) pp. 311–312

    Google Scholar 

  82. E. Spiller. R. Feder: X-ray lithography, in X-Ray Optics, ed. by H.-J. Queiser, Topics Appl. Phys., Vol. 22 ( Springer, Berlin, Heidelberg 1977 )

    Google Scholar 

  83. R.A. Bartolini: Photoresits, in Holographic Recording Materials, ed. by H.M. Smith, Topics Appl. Phys., Vol. 20 ( Springer, Berlin, Heidelberg 1977 )

    Google Scholar 

  84. H.I. Bjelkhagen: Silver-Halide Recording Materials for Holography and Their Processing, 2nd edn., Springer Ser. Opt. Sci., Vol. 66 ( Springer, Berlin, Heidelberg 1995 )

    Google Scholar 

  85. M.C. Rowland: The preparation and properties of gallium arsenide, in Gallium Arsenide Lasers, ed. by C.H. Gooch ( Wiley-Interscience, New York 1969 ) p. 166

    Google Scholar 

  86. S. Somekh, E. Garmire, A. Yariv, H. Garvin, R.G. Hunsperger: Appl. Opt. 12, 455 (1973)

    Article  ADS  Google Scholar 

  87. A.R. Goodwin, D.H. Lovelace, P.R. Selway: Opto-Electron. 4, 311 (1972)

    Article  Google Scholar 

  88. M. Kawabe, S. Hirata, S. Namba: IEEE Trans. CAS-26, 1109 (1979)

    Google Scholar 

  89. F.A. Blum, D.W. Shaw. W.C. Holton: Appl. Phys. Lett. 25, 116 (1974)

    Article  ADS  Google Scholar 

  90. H.F. Taylor, W.E. Martin, D.B. Hall, V.N. Smiley: Appl. Phys. Lett. 21, 95 (1972)

    Article  ADS  Google Scholar 

  91. S. Somek, E. Garmire, A. Yariv, H. Garvin. R.G. Hunsperger: Appl. Opt. 13, 327 (1974)

    Article  ADS  Google Scholar 

  92. J. Heibe, E. Voges: Fabrication of strip waveguides in LiNbO3 by combined metal diffusion and ion implantation. OSA Topical Meeting on Integrated Optics, Incline Village (1980)

    Google Scholar 

  93. S.M. Sze: VLSI Technology, 2nd edn. ( McGraw-Hill, New York 1988 )

    Google Scholar 

  94. D.F. Barbe: Very Large Scale Integration (VLSI), 2nd edn., Springer Ser. Electrophys., Vol. 5 ( Springer, Berlin, Heidelberg 1982 )

    Google Scholar 

  95. J.L. Jacket, R.E. Howard, E.L. Hu, S.P. Lyman: Appl. Phys. Lett. 38, 907 (1981)

    Article  ADS  Google Scholar 

  96. M.A. Bosch, L.A. Coldren, E. Good: Appl. Phys. Lett. 38, 264 (1981)

    Article  ADS  Google Scholar 

  97. K. Gamo: Mater. Sci. Eng. B: Solid-State Mater. for Adv. Techn. B 9, 307 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunsperger, R.G. (2002). Waveguide Fabrication Techniques. In: Integrated Optics. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38843-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38843-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12096-5

  • Online ISBN: 978-3-540-38843-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics