Skip to main content

Origin, Function, and Transmission of Mitochondria

  • Chapter
Book cover Origin of Mitochondria and Hydrogenosomes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) The molecular biology of the cell. Garland, New York.

    Google Scholar 

  • Allen CA, Håkansson G, Allen JF (1995) Redox conditions specify the proteins synthesized by isolated chloroplasts and mitochondria. Redox Report 1:119–123.

    CAS  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335.

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (1993a) Control of gene-expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 165:609–631.

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (1993b) Redox control of gene-expression and the function of chloroplast genomes – an hypothesis. Photosynth Res 36:95–102.

    Article  CAS  Google Scholar 

  • Allen JF (1996) Separate sexes and the mitochondrial theory of ageing. J Theor Biol 180:135–140.

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2003) The function of genomes in bioenergetic organelles. Philos Trans Roy Soc Lond B Biol Sci 358:19–38.

    Article  CAS  Google Scholar 

  • Allen JF, Allen CA (1999) A mitochondrial model for premature ageing of somatically cloned mammals. IUBMB Life 48:369–372.

    PubMed  CAS  Google Scholar 

  • Allen JF, Puthiyaveetil S, Ström J, Allen CA (2005) Energy transduction anchors genes in organelles. BioEssays 27:426–435.

    Article  PubMed  CAS  Google Scholar 

  • Altmann R (1890) Die Elementarorganismen und ihre Beziehungen zu den Zellen. Veit, Leipzig.

    Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495.

    Article  PubMed  CAS  Google Scholar 

  • Benda C (1898) Weitere Mitteilungen über die Mitochondria. Verh Dtsch Physiol Ges 376–383.

    Google Scholar 

  • Bensley RR, Hoerr N (1934) Studies on cell structure by the freezing-drying method VI. The preparation and properties of mitochondria. Anat Rec 60:449–455.

    Article  CAS  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JH (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79.

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Gray MW, Franz Lang B (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716.

    Article  PubMed  CAS  Google Scholar 

  • Canfield DE (1998) A new model for proterozoic ocean chemistry. Nature 396:450–453.

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1987) Eukaryotes with no mitochondria. Nature 326:332–333.

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605.

    PubMed  CAS  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria – central role of complex III. J Biol Chem 278:36027–36031.

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, Perea J, Shu Y, Samatey FA, Popot JL, Jacq C (1995) Limitations to invivo import of hydrophobic proteins into yeast mitochondria. The case of a cytoplasmically synthesized apocytochrome b. Eur J Biochem 228:762–771.

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, van der Giezen M, Horner DS, Dyal PL, Foster P (2003) Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos Trans R Soc Lond B Biol Sci 358:191–204.

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi B (1950) The interplay of heredity and environment in the synthesis of respiratory enzymes in yeast. Harvey Lect 46:45–67.

    PubMed  Google Scholar 

  • Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W (2004) A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660.

    Article  PubMed  CAS  Google Scholar 

  • Feagin JE, Gardner MJ, Williamson DH, Wilson RJ (1991) The putative mitochondrial genome of Plasmodium falciparum. J Protozool 38:243–345.

    Google Scholar 

  • Galvis MLE, Allen JF, Håkansson G (1998) Protein synthesis by isolated pea mitochondria is dependent on the activity of respiratory complex II. Curr Genet 33:320–329.

    Article  Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357.

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42.

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300.

    PubMed  CAS  Google Scholar 

  • Karp G (2002) Cell and molecular biology concepts and experiments, 4th edn. Wiley, New York.

    Google Scholar 

  • Keilin D (1925) On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc R Soc Lond B Biol Sci 98:312–339.

    Article  Google Scholar 

  • Kölliker A (1857) Einige Bemerkungen über die Endigungen der Hautnerven und deu Bau der Muskelzellen. Z Wiss Zool 8:311–325.

    Google Scholar 

  • Kurland CG, Andersson SG (2000) Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64:786–820.

    Article  PubMed  CAS  Google Scholar 

  • Kushnareva Y, Murphy AN, Andreyev A (2002) Complex i-mediated reactive oxygen species generation: Modulation by cytochrome c and nad(p)(+) oxidation-reduction state. Biochem J 368:545–553.

    Article  PubMed  CAS  Google Scholar 

  • Lane N (2005) Power, sex, suicide. Mitochondria and the meaning of life. Oxford University Press, Oxford.

    Google Scholar 

  • Lang BF, Burger G, O'Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497.

    Article  PubMed  CAS  Google Scholar 

  • Law R, Hutson V (1992) Intracellular symbionts and the evolution of uniparental cytoplasmic inheritance. Proc Roy Soc Lond B Biol Sci 248:69–77.

    Article  CAS  Google Scholar 

  • Lill R, Mühlenhoff U (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30:133–141.

    Article  PubMed  CAS  Google Scholar 

  • Luck DJL, Reich E (1964) DNA in mitochondria of neurospora crassa. Proc Natl Acad Sci USA 52:931–938.

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven.

    Google Scholar 

  • Martin W, Kowallik KV (1999) Annotated English translation of Mereschkowsky's 1905 paper “Über Natur und Ursprung der Chromatophoren im Pflanzenreiche”. Eur J Phycol 34:287–295.

    Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41.

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539.

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rotte C, Hoffmeister M, Theissen U, Gelius-Dietrich G, Ahr S, Henze K (2003) Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55:193–204.

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055.

    PubMed  CAS  Google Scholar 

  • McLean JR, Cohn GL, Brandt IK, Simpson MV (1958) Incorporation of labeled amino acids into the protein of muscle and liver mitochondria. J Biol Chem 233:657–663.

    PubMed  CAS  Google Scholar 

  • Mereschkowsky CS (1905) Über Natur and Ursprung der Chromatophoren im Pflanzenreiche. Biol Zentr 25:593–604.

    Google Scholar 

  • Mitchell MB, Mitchell HK (1952) A case of maternal inheritance in neurospora crassa. Proc Natl Acad Sci USA 38:442.

    Article  PubMed  CAS  Google Scholar 

  • Nass MM, Nass S (1963a) Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J Cell Biol 19:593–611.

    Article  PubMed  CAS  Google Scholar 

  • Nass S, Nass MM (1963b) Intramitochondrial fibers with DNA characteristics. Ii. Enzymatic and other hydrolytic treatments. J Cell Biol 19:613–629.

    Article  PubMed  CAS  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091.

    Article  PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Kadowaki K, Nakazono M, Hirai A (2002) The complete sequence of the rice (oryza sativa l.) mitochondrial genome: Frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445.

    Article  PubMed  CAS  Google Scholar 

  • Pearl R (1928) The rate of living. University of London Press, London.

    Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–628.

    Article  CAS  Google Scholar 

  • Popot JL, de Vitry C (1990) On the microassembly of integral membrane proteins. Annu Rev Biophys Biophys Chem 19:369–403.

    Article  PubMed  CAS  Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155.

    Article  PubMed  CAS  Google Scholar 

  • Rivera MC, Jain R, Moore JE, Lake JA (1998) Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci USA 95:6239–6244.

    Article  PubMed  CAS  Google Scholar 

  • Saraste M, Walker JE (1982) Internal sequence repeats and the path of polypeptide in mitochondrial adp/atp translocase. FEBS Lett 144:250–254.

    Article  PubMed  CAS  Google Scholar 

  • Schatz G (1998) Protein transport – the doors to organelles. Nature 395:439–440.

    Article  PubMed  CAS  Google Scholar 

  • Schatz G, Haslbrunner E, Tuppy H (1964) Deoxyribonucleic acid associated with yeast mitochondria. Biochem Biophys Res Commun 15:127–132.

    Article  CAS  Google Scholar 

  • Schimper AFW (1883) Über die Entwicklung der Chlorophyll Körner und Farbkörner. Bot Zeit 41:105–114.

    Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199:395–403.

    Article  PubMed  CAS  Google Scholar 

  • Seydoux G, Schedl T (2001) The germline in C. elegans: origins, proliferation, and silencing. Int Rev Cytol 203:139–185.

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778.

    Article  PubMed  CAS  Google Scholar 

  • Staniek K, Nohl H (2000) Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta 1460:268–275.

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277: 44784–44790.

    Article  PubMed  CAS  Google Scholar 

  • Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (2000) Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 63:582–590.

    Article  PubMed  CAS  Google Scholar 

  • Tielens AGM, Rotte C, van Hellemond JJ, Martin W (2002) Mitochondria as we don't know them. Trends Biochem Sci 27:564–572.

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135.

    Article  PubMed  CAS  Google Scholar 

  • Tsang WY, Lemire BD (2003) The role of mitochondria in the life of the nematode, Caenorhabditis elegans. Biochim Biophys Acta 1638:91–105.

    PubMed  CAS  Google Scholar 

  • van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, Xue GP, Embley TM, Kunji ERS (2002) Conserved properties of hydrogenosomal and mitochondrial adp/atp carriers: A common origin for both organelles. EMBO J 21:572–579.

    Article  PubMed  Google Scholar 

  • van der Giezen M, Tovar J (2005) Degenerate mitochondria. EMBO Rep 6:525–530.

    Article  PubMed  Google Scholar 

  • van der Giezen M, Tovar J, Clark CG (2005) Mitochondria-derived organelles in protists and fungi. Int Rev Cytol 244:175–225.

    Article  PubMed  Google Scholar 

  • Von Heijne G (1986) Why mitochondria need a genome. FEBS Lett 198:1–4.

    Article  Google Scholar 

  • Warburg O (1913) Über Sauerstoffatmende Körnchen aus Leberzellen und über Sauerstoffatmung in Berkefeld-Filtralen Wässriger Leberextrakte. Arch Gesamte Physiol 154:599–617.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allen, C.A., Van Der Giezen, M., Allen, J.F. (2007). Origin, Function, and Transmission of Mitochondria. In: Martin, W.F., Müller, M. (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38502-8_3

Download citation

Publish with us

Policies and ethics