Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN))

Abstract

Chapter 2 was devoted to an ensemble of oscillators interacting via random forces. We studied the oscillators’ spontaneous behavior and their reaction to stimulation. In this way we were able to investigate type 0 and type 1 resetting of an ensemble of oscillators. Moreover by encountering burst splitting we learned how difficult it may be to assign the ensemble’s collective activity to a single phase value. However, in the ensemble scenario one important dynamical feature was completely missing: No self-organized patterns of synchronization occured. Actually, self-synchronized collective activity abounds in physiological systems (see, for instance, Steriade, Jones, Llinás 1988). For this reason it is not sufficient to model the oscillators’ mutual interactions by means of random forces. Rather we have to take into account synchronizing couplings among the oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abeles, M. (1982): Local cortical circuits. An elektrophysiological study, Springer, Berlin

    Book  Google Scholar 

  • Aertsen, A. (ed.) (1993): Brain theory, Elsevier, Amsterdam

    Google Scholar 

  • Aizawa, Y. (1976): Synergetic approach to the phenomena of mode-locking in nonlinear systems, Prog. Theor. Phys. 56, 703–716

    Article  ADS  Google Scholar 

  • Arbib, A. (ed.) (1995): The handbook of brain theory and neural networks, MIT Press, Cambridge

    Google Scholar 

  • Arnold, V.I. (1983): Geometrical methods in the theory of ordinary differential equations, Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Aulbach, B. (1984): Continuous and Discrete Dynamics near Manifolds of Equilibria, LNM 1058, Springer, Heidelberg

    Google Scholar 

  • Beurle, R.L. (1956): Properties of a mass of cells capable of regenerating pulses, Philos. Trans. Soc. London, Ser. A 240, 55–94

    Article  ADS  Google Scholar 

  • Braitenberg, V., Schüz, A. (1991): Anatomy of the Cortex, Springer, Berlin

    Google Scholar 

  • Carr, J. (1981): Applications of Centre Manifold Theory,Appl. Math. Sciences 35, Springer

    Google Scholar 

  • Chawanya, T., Aoyagi, T., Nishikawa, I., Okuda, K., Kuramoto, Y. (1993): A model for feature linking via collective oscillations in the primary visual cortex, Biol. Cybern. 68, 483–490

    Google Scholar 

  • Cowan, J.D. (1987): Brain mechansims underlying visual hallucinations. In: Paines, D. (ed.), Emerging syntheses in science, Addison-Wesley, New York, 123–131 Creutzfeldt, O.D. (1983): Cortex Cerebri, Springer, Berlin

    Google Scholar 

  • Crick, F. (1984): Function of the thalamic reticular complex: the searchlight hypothesis, Proc. Natl. Acad. Sci. USA 81, 4586–4590

    Article  ADS  Google Scholar 

  • Daido, H. (1992a): Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett. 68, 1073–1076.

    Article  ADS  Google Scholar 

  • Daido, H. (1992b): Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators, Prog. Theor. Phys. 88, 1213–1218.

    Article  ADS  Google Scholar 

  • Daido, H. (1993): A solvable model of coupled limit-cycle oscillators exhibiting partial perfect synchrony and novel frequency spectra, Physica D 69, 394–403.

    Article  ADS  MATH  Google Scholar 

  • Daido, H. (1994): Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling, Phys. Rev. Lett. 73, 760–763.

    Article  ADS  Google Scholar 

  • Daido, H. (1996): Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: bifurcation of the order function, Physica D 91, 24–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J. (1988): Coherent oscillations: a mechanism of feature linking in the visual cortex?, Biol. Cybern. 60, 121–130

    Article  Google Scholar 

  • Eckhorn, R., Frien, A., Bauer, R., Woelbern, T., Kehr, H. (1993): High Frequency 60–90 Hz oscillations in primary visual cortex of awake monkey, Neuro Rep. 4, 243–246

    Google Scholar 

  • Edelman, G.M. (1992): Bright air, brilliant fire, Penguin Books, London Eggermont, J.J.

    Google Scholar 

  • Edelman, G.M. (1992): (1990): The correlative brain. Theory and experiment in neural interaction, Springer, Berlin

    Google Scholar 

  • Elphik, C., Tirapegui, E., Brachet, M., Coullet, P. Iooss, G. (1987): A simple global characterization for normal forms of singular vector fields, Physica D 29, 95–127

    Article  MathSciNet  ADS  Google Scholar 

  • Engel, A.K., König, P., Gray, C.M., Singer, W. (1990): Synchronization of oscillatory responses: a mechanism for stimulus-dependent assembly formationin cat visual cortex. In: Parallel Processing in Neural Systems and Computers, Eck-miller, R., Hartmann, G., Hauske, G. (eds.), Elsevier, North Holland

    Google Scholar 

  • Ermentrout, G.B., Cowan, J. (1979): A mathematical theory of visual hallucination patterns, Biol. Cybern. 34, 137–150

    Article  MathSciNet  MATH  Google Scholar 

  • Ermentrout, G.B., Rinzel, J. (1981): Waves in a simple, excitable or oscillatory reaction-diffusion model, J. Math. Biol. 11, 269–294

    Google Scholar 

  • FitzHugh, R. (1961): Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1, 445–466

    Google Scholar 

  • Freeman, W.J. (1975): Mass action in the nervous system, Academic Press, New York

    Google Scholar 

  • Gerstner, W., Ritz, R., Hemmen, J.L. van (1993): A biologically motivated and analytically soluble model of collective oscillations in the cortex, Biol. Cybern. 68, 363–374

    Article  MATH  Google Scholar 

  • Glass, L., Mackey, M.C. (1988): From Clocks to Chaos, The Rhythms of Life,Princeton University Press

    Google Scholar 

  • Golomb, D., Hansel, D., Shraiman, B., Sompolinsky, H. (1992): Clustering in globally coupled phase oscillators

    Google Scholar 

  • Golomb, D., Wang, X.J., Rinzel, J. (1996): Propagation of spindle waves in a tha- lamic slice model, J. Neurophysiol. 75, 750–769 Phys. Rev. A 45, 3516–3530

    Article  Google Scholar 

  • Gray, C.M., Singer, W. (1987): Stimulus specific neuronal oscillations in the cat visual cortex: a cortical function unit, Soc. Neurosci. 404, 3

    Google Scholar 

  • Gray, C.M., Singer, W. (1987): (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci. USA 86, 1698–1702

    Google Scholar 

  • Gray, C.M., König, P., Engel, A.K., Singer, W. (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature 338, 334–337

    Article  ADS  Google Scholar 

  • Griffith, J.S. (1963): A field theory of neural nets: I: Derivation of field equations, Bull. Math. Biophys. 25, 111–120

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith, J.S. (1965): A field theory of neural nets: II: Properties of field equations, Bull. Math. Biophys. 27, 187 195

    MathSciNet  Google Scholar 

  • Grossberg, S., Somers, D. (1991): Synchronized oscillations during cooperative feature linking in a cortical model of visual perception, Neural Networks 4, 453–466

    Article  Google Scholar 

  • Guckenheimer, J., Holmes, P. (1990): Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Berlin, Heidelberg

    Google Scholar 

  • Haken, H. (1964): A nonlinear theory of laser noise and coherence I, Z. Phys. 181, 96–124

    Article  Google Scholar 

  • Haken, H. (1970): Laser Theory, Springer, Berlin; (ed. )

    Google Scholar 

  • Haken, H. (1973): Synergetics (Proceedings of a Symposium on Synergetics, Elmau 1972 ), B.G. Teubner, Stuttgart

    Google Scholar 

  • Haken, H. (1975): Generalized Ginzburg-Landau equations for phase transition-like phenomena in lasers, nonlinear optics, hydrodynamics and chemical reactions, Z. Phys. B 21, 105–114

    Google Scholar 

  • Haken, H. (1977): Synergetics, An Introduction, Springer, Berlin

    Book  MATH  Google Scholar 

  • Haken, H. (1979): Pattern formation and pattern recognition — an attempt at a synthesis. In: Pattern formation by dynamic systems and pattern recognition, H. Haken (ed.), Springer, Berlin, 2–13

    Chapter  Google Scholar 

  • Haken, H. (1983) Advanced Synergetics, Springer, Berlin

    MATH  Google Scholar 

  • Haken, H. (1988): Information and Self-Organization, Springer, Berlin

    MATH  Google Scholar 

  • Haken, H. (1991): Synergetic computers and cognition, Springer, Berlin

    Book  MATH  Google Scholar 

  • Haken, H. (1996a): Principles of Brain Functioning, A Synergetic Approach to Brain Activity, Behavior and Cognition, Springer, Berlin

    Book  MATH  Google Scholar 

  • Haken, H. (1996b): Slaving principle revisited, Physica D 97, 95–103

    Article  MathSciNet  MATH  Google Scholar 

  • Haken, H., Graham, R. (1971): Synergetik — Die Lehre vom Zusammenwirken, Umschau 6, 191

    Google Scholar 

  • Haken, H., Wunderlin, A. (1982): Slaving principle for stachastic differential equations with additive and multiplicative noise and for discrete noisy maps, Z. Phys. B 47, 179–187

    Article  MathSciNet  Google Scholar 

  • Haken, H., Kelso, J.A.S., Bunz, H. (1985): A theoretical model of phase transitions in human hand movements, Biol. Cybern. 51, 347–356

    Article  MathSciNet  MATH  Google Scholar 

  • Hakim, V., Rappel, W. (1992): Dynamics of the globally coupled complex Ginzburg-Landau equation, Phys. Rev. A 46, R7347 - R7350

    Article  Google Scholar 

  • Han, S. K., Kurrer, C., Kuramoto, Y. (1995): Dephasing and bursting in coupled neural oscillators, Phys. Rev. Lett. 75, 3190–3193

    Article  ADS  Google Scholar 

  • Hebb, D.O. (1949): Organization of Behavior, Wiley, New York

    Google Scholar 

  • Hansel, D., Mato, G., Meunier, C. (1993a): Clustering and slow switching in globally coupled phase oscillators, Phys. Rev. E 48, 3470–3477

    Google Scholar 

  • Hansel, D., Mato, G., Meunier, C. (1993b): Phase dynamics of weakly coupled Hodgkin-Huxley neurons, Europhys. Lett., 23, 367–372

    Article  ADS  Google Scholar 

  • Hirsch, M.W., Smale, S. (1974): Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, San Diego

    MATH  Google Scholar 

  • Hirsch, M., Pugh, C., Shub, M. (1976): Invariant Manifolds, Lecture Notes Math. 583, Springer, Berlin

    Google Scholar 

  • Hodgkin, A.L., Huxley, A. F. (1952): A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117, 500–544

    Google Scholar 

  • Hopfield, J.J. (1982): Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. 79, 2554–2558

    Article  MathSciNet  ADS  Google Scholar 

  • Hoppensteadt, F.C., Izhikevich, E.M. (1997): Weakly Connected Neural Networks, Springer, Berlin

    Book  Google Scholar 

  • Hubel, D.H., Wiesel T.N. (1959): Receptive fields of single neurones in the cat’s striate cortex, J. Physiol. 148, 574–591

    Google Scholar 

  • Hubel, D.H., Wiesel T.N. (1962): Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. 160, 106–154

    Google Scholar 

  • Hubel, D.H., Wiesel T.N. (1963): Shape and arrangement of columns in cat’s striate cortex, J. Physiol. 165, 559–568

    Google Scholar 

  • Iooss, G. (1987): Global characterization of the normal form for a vector field near a closed orbit, J. Diff. Equ. 76, 47–76

    Article  MathSciNet  Google Scholar 

  • boss, G., Adelmeyer, M. (1992): Topics in Bifurcation Theory and Applications, Advanced Series in Nonlinear Dynamics, Vol. 3, World Scientific, Singapore

    Google Scholar 

  • Jirsa, V.K., Haken, H. (1996): Field theory of electromagnetic brain activity, Phys. Rev. Lett. 77, 960–963

    Article  ADS  Google Scholar 

  • Jirsa, V.K., Haken, H. (1997): A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics, Physica D 99, 503–526

    Article  MATH  Google Scholar 

  • Julesz, B. (1991): Early vision and focal attention, Rev. Mod. Phys. 63, 735–772

    Article  ADS  Google Scholar 

  • Kelley, A. (1967): The stable, center-stable, center, center-unstable and unstable manifolds, J. Diff. Equ. 3, 546–570

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kelso, J.A.S. (1981): On the oscillatory basis of movements, Bulletin of Psychonomic Society 18, 63

    Google Scholar 

  • Kelso, J.A.S. (1984): Phase transitions and critical behavior in human bimanual coordination, American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 15, R1000 - R1004

    Google Scholar 

  • Kirchgässner, K. (1982): Wave-solutions of reversible systems and applications, J. Diff. Equations 45, 113–127

    Article  MATH  Google Scholar 

  • Koch, C., Segev, I. (1989): Methods in Neuronal Modeling, From Synapses to Networks, MIT Press, Cambridge

    Google Scholar 

  • König, P., Engel, A.K., Singer, W. (1996): Integrator or coincidence detector? The role of the cortical neuron revisited, TINS 19, 130–137

    Google Scholar 

  • Kreiter, A.K., Singer, W. (1992): Oscillatory neuronal responses in the visual cortex of awake macaque monkey, Eur. J. Neurosci. 4, 369–375

    Article  Google Scholar 

  • Kuramoto, Y. (1991): Collective synchronization of pulse-coupled oscillators and excitable units, Physica D 50, 15–30

    Google Scholar 

  • Kuramoto, Y. (1984): Chemical Oscillations, Waves, and Turbulence, Springer, Berlin

    Book  MATH  Google Scholar 

  • Langenberg, U., Kessler, K., Hefter, H., Cooke, J.D., Brown, S.H., Freund, H.-J. (1992): Effects of delayed visual feedback during sinusoidal visuomotor tracking, Soc. Neurosci. Abstr. Suppl. 5, 209

    Google Scholar 

  • Livingstone, M.S. (1991): Visually evoked oscillations in monkey striate cortex, Soc. Neurosci. Abstr. 17, 73

    Google Scholar 

  • Malsburg, C. von der, Schneider, W. (1986): A neural cocktail-party processor, Biol. Cybern. 54, 29–40

    Article  Google Scholar 

  • Marr, D. (1976): Early processing of visual information, Philos. Trans. R. Soc. Lond. [Biol] 275, 483–524

    Article  ADS  Google Scholar 

  • Matthews, P.C., Strogatz, S.H. (1990): Phase diagram for the collective behavior of limit-cycle oscillators, Phys. Rev. Lett. 65, 1701–1704

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • McCulloch, W., Pitts, W. (1943): A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5, 115–133

    Article  MathSciNet  MATH  Google Scholar 

  • Meinhardt, H. (1982): Models of Biological Pattern Formation, Academic Press, London

    Google Scholar 

  • Milner, P.M. (1974): A model for visual shape recognition, Psychol. Rev. 81, 52 1535

    Google Scholar 

  • Mirollo, R. E., Strogatz, S. H. (1990): Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math. 50, 1645–1662

    MathSciNet  MATH  Google Scholar 

  • Müller, B., Reinhardt, J. (1990): Neural Networks, An Introduction, Springer, Berlin

    MATH  Google Scholar 

  • Murray, J. D. (1989): Mathematical Biology, Springer, Berlin

    Book  MATH  Google Scholar 

  • Nagumo, J.S., Arimoto, S., Yoshizawa, S. (1962): An active pulse transmission line simulating nerve axon, Proc. IRE 50, 2061–2071

    Article  Google Scholar 

  • Murthy, V.N., Fetz, E.E. (1992): Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys, Proc. Natl. Acad. Sci. USA 89, 5670–5674

    Article  ADS  Google Scholar 

  • Nakagawa, N., Kuramoto, Y. (1993): Collective chaos in a population of globally coupled oscillators, Prog. Theor. Phys. 89, 313–323

    Article  ADS  Google Scholar 

  • Neuenschwander, S., Varela, F.J. (1993): Visually triggered neuronal oscillations in birds: an autocorrelation study of tectal activity, Eur. J. Neurosci. 5, 870–881

    Article  Google Scholar 

  • Nicholis, S., Wiesenfeld, K. (1992): Ubiquitous neutral stability of splay-phase states, Phys. Rev. A 45, 8430–8435

    Article  Google Scholar 

  • Nicolis, G., Prigogine, I. (1977): Self-Organization in Nonequilibrium Systems, Wiley, New York

    MATH  Google Scholar 

  • Niebur, E., Schuster, H.G., Kammen, D.M. (1991): Collective frequencies and metastability in networks of limit-cycle oscillators with time delay, Phys. Rev. Lett. 67, 2753–2756

    Article  ADS  Google Scholar 

  • Nunez, P.L. (1974): The brain wave equation: a model for the EEG, Math. Biosci. 21, 279–297

    Article  MATH  Google Scholar 

  • Nunez, P.L. (1981): Electric fields of the brain, Oxford University Press; ( 1995 ): Neocortical dynamics and human EEG rhythms, Oxford University Press

    Google Scholar 

  • Okuda, K (1993): Variety and generality of clustering in globally coupled oscillators, Physica D 63, 424–436

    Article  ADS  MATH  Google Scholar 

  • Omidvar, O.M. (ed.) (1995): Progress in neural networks, Vol. 3, Ablex Publishing Corporation, Norwood, New Jersey

    Google Scholar 

  • Orban, G.A. (1984): Neuronal Operations in the Visual Cortex, Springer, Berlin

    Book  Google Scholar 

  • Perkel, D.H., Bullock, T.H. (1968): Neural coding, Neurosci. Res. Prog. Sum. 3, 405–527

    Google Scholar 

  • Plant, R.E. (1978): The effects of calcium on bursting neurons, Biophys. J. 21, 217–237

    Article  Google Scholar 

  • Plant, R.E. (1981): Bifurcation and resonance in a model for bursting nerve cells, J. Math. Biol. 11, 15–32

    Article  MathSciNet  MATH  Google Scholar 

  • Pliss, V. (1964): Principal reduction in the theory of stability of motion, Izv. Akad. Nauk. SSSR Math. Ser. 28, 1297–1324 (in Russian)

    MathSciNet  MATH  Google Scholar 

  • Ramachandran, V.S. (1988): Perception of shape from shading Nature 331, 163–166

    Google Scholar 

  • Reichardt, W.E., Poggio, T (eds.) (1981): Theoretical approaches in neurobiology, MIT Press, Cambridge

    Google Scholar 

  • Rieke, F., Warland, D., de Ruyter van Stevenick, R., Bialek, W. (1997): Spikes: Exploring the Neural Code, MIT Press, Cambridge

    Google Scholar 

  • Rinzel, J. (1986): On different mechanisms for membrane potential bursting, Proc. Sympos. on Nonlinear Oscillations in Biology and Chemistry, Salt Lake City 1985, Lect. Notes in Biomath. Springer, Berlin 66, 19–33

    MathSciNet  Google Scholar 

  • Roelfsema, P.R., Engel, A.K., König, P., Singer, W. (1997): Visuomotor integration is associated with zero time-lag synchronization among cortical areas, Nature 385, 157–161

    Article  ADS  Google Scholar 

  • Sakaguchi, H., Shinomoto, S., Kuramoto, Y. (1987): Local and global self-entrainments in oscillator lattices, Prog. Theor. Phys. 77, 1005–1010

    Article  ADS  Google Scholar 

  • Sakaguchi, H., Shinomoto, S., Kuramoto, Y. (1988): Mutual entrainment in oscillator lattices with nonvariational type interaction, Prog. Theor. Phys. 79, 1069–1079

    Article  MathSciNet  ADS  Google Scholar 

  • Sandstede, B., Scheel, A., Wulff, C. (1997): Center-manifold reduction for spiral waves, C. R. Acad. Sci. Paris (Série I, Équations aux dérivées partielles/Partial Differential Equations) 324, 153–158

    MathSciNet  ADS  MATH  Google Scholar 

  • Schillen, T.B., König, P. (1994): Binding by temporal structure in multiple feature domains of an oscillatory neuronal network, Biol. Cybern. 70, 397–405

    Article  Google Scholar 

  • Schöner, G., Haken, H., Kelso, J.A.S. (1986): A stochastic theory of phase transitions in human hand movement, Biol. Cybern. 53, 247–257

    Article  MATH  Google Scholar 

  • Schuster, H.G., Wagner, P. (1990a): A model for neuronal oscillations in the visual cortex. 1. Mean-field theory and derivation of the phase equations. Biol. Cybern. 64, 77–82

    Article  MATH  Google Scholar 

  • Schuster, H.G., Wagner, P. (1990b): A model for neuronal oscillations in the visual cortex. 2. Phase description of the feature dependent synchronization. Biol. Cybern. 64, 83–85

    Article  MATH  Google Scholar 

  • Shiino, M., Frankowicz, M. (1989): Synchronization of infinitely many coupled limit-cycle type oscillators, Physics Letters A 136, 103–108

    Article  MathSciNet  ADS  Google Scholar 

  • Shimizu, H., Yamaguchi, Y., Tsuda, I., Yano, M. (1985): Pattern recognition based on holonic information dynamics: towards synergetic computers. In: Complex systems - operational approaches, Haken, H. (ed.), Springer, Berlin

    Google Scholar 

  • Singer, W. (1989): Search for coherence: a basic principle of cortical self-organization, Concepts Neurosci. 1, 1–26

    Google Scholar 

  • Singer, W., Gray, C.M. (1995): Visual feature integration and the temporal correlation hypothesis, Annu. Rev. Neurosci. 18, 555–586

    Article  Google Scholar 

  • Sompolinsky, H., Golomb, D., Kleinfeld, D. (1991): Cooperative dynamics in visual processing, Phys. Rev. A 43, 6990–7011

    Article  Google Scholar 

  • Stephan, K.M., Binkofski, F., Halsband, U., Dohle, C., Wunderlich, G., Schnitzler, A., Tass, P., Posse, S., Herzog, H., Sturm, V., Zilles, K., Seitz, R.J., Freund, H.-J.: The role of ventral medial wall motor areas in bimanual coordination, Brain, 122, 351–368

    Google Scholar 

  • Steriade, H., Jones, E.G., Llinâs, R. (1988): Thalamic Oscillations and Signaling, Wiley, New York

    Google Scholar 

  • Strogatz, S.H. (1994): Nonlinear Dynamics and Chaos, Addison-Wesley, Reading, MA

    Google Scholar 

  • Strogatz, S.H., Mirollo, R.E. (1988a): Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies, Physica D 31, 143–168

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Strogatz, S.H., Mirollo, R.E. (1988b): Collective Synchronisation in lattices of non-linear oscillators with randomness, J. Phys. A 21, L699 - L705

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Strogatz, S.H., Mirollo, R.E. (1993): Splay states in globally coupled Josephson arrays: analytical prediction of Floquet multipliers, Phys. Rev. E 47, 220–227

    Google Scholar 

  • Swift, J.W., Strogatz, S.H., Wiesenfeld, K (1992): Averaging of globally coupled oscillators, Physica D 55, 239–250

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Tass, P. (1995a): Cortical pattern formation during visual hallucinations, J. Biol. Phys. 21, 177–210

    Article  Google Scholar 

  • Tass, P. (1995b): Phase and frequency shifts of two nonlinearly coupled oscillators, Z. Phys B 99, 111–121

    Article  Google Scholar 

  • Tass, P. (1997a): Phase and frequency shifts in a population of phase oscillators, Phys. Rev. E 56, 2043–2060

    Google Scholar 

  • Tass, P. (1997b): Oscillatory cortical activity during visual hallucinations, J. Biol. Phys. 23, 21–66

    Article  Google Scholar 

  • Tass, P., Haken, H. (1996a): Synchronization in networks of limit cycle oscillators, Z. Phys. B 100, 303–320

    Article  Google Scholar 

  • Tass, P., Haken, H. (1996b): Synchronized oscillations in the visual cortex–a synergetic model, Biol. Cybern. 74, 31–39

    Article  MATH  Google Scholar 

  • Tass, P., Wunderlin, A., Schanz, M. (1995): A theoretical model of sinusoidal forearm tracking with delayed visual feedback, J. Biol. Phys. 21, 83–112

    Article  Google Scholar 

  • Tass, P., Kurths, J., Rosenblum, M.G., Guasti, G., Hefter, H. (1996): Delay-induced transitions in visually guided movements, Phys. Rev. E 54, R2224 - R2227

    Google Scholar 

  • Thom, R. (1972): Stabilité structurelle et morphogénèse - Essai d’une théorie générale des modèles, W.A. Benjamin, Inc., Reading, Massachusetts

    Google Scholar 

  • Treisman, A. (1980): A feature-integration theory of attention, Cogn. Psychol. 12, 97–136

    Google Scholar 

  • Treisman, A. (1986): Properties, parts and objects. In: Handbook of perception and human performances, Boff, K., Kaufman, L., Thomas, I. (eds.), Wiley, New York

    Google Scholar 

  • Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., Aertsen, A. (1995): Dynamics of neuronal interactions in monkey cortex in relation to behavioural events, Nature 373, 515–518

    Article  ADS  Google Scholar 

  • Vanderbauwhede, A. (1989): Center Manifolds, Normal Forms and Elementary Bifurcations, Dyn. Rep. 2, 89–169

    MathSciNet  Google Scholar 

  • Wiesenfeld, K., Hadley, P. (1989): Attractor crowding in oscillator arrays, Phys. Rev. Lett. 62, 1335–1338

    Article  MathSciNet  ADS  Google Scholar 

  • Wilson, H.R., Cowan, J.D. (1972): Excitatory and inhibitory interactions in localized populations of model neurons, Biophysical Journal 12, 1–24

    Article  ADS  Google Scholar 

  • Wilson, H.R., Cowan, J.D. (1973): A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik 13, 55–80

    Article  MATH  Google Scholar 

  • Winfree, A. T. (1967): Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16, 15–42

    Article  Google Scholar 

  • Winfree, A. T. (1980): The Geometry of Biological Time, Springer, Berlin

    MATH  Google Scholar 

  • Wischert, W., Wunderlin, A., Pelster, A., Olivier, M., Groslambert, J. (1994): Delay-induced instabilities in nonlinear feedback systems, Phys. Rev. E 49, 203–219

    MathSciNet  Google Scholar 

  • Wunderlin, A., Haken, H. (1975): Scaling theory for nonequilibrium systems, Z. Phys. B 21, 393–401

    Google Scholar 

  • Wunderlin, A., Haken, H. (1981): Generalized Ginzburg-Landau equations, slaving principle and center manifold theorem, Z. Phys. B 44, 135–141

    Article  MathSciNet  Google Scholar 

  • Yamaguchi, Y., Shimizu, H. (1984): Theory of self-synchronization in the presence of native frequency distribution and external noises, Physica D 11, 212–226

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tass, P.A. (1999). Synchronization Patterns. In: Phase Resetting in Medicine and Biology. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38161-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38161-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38159-4

  • Online ISBN: 978-3-540-38161-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics