Skip to main content

Application of X-Ray Spectroscopy to the Study of Energy Transport in Plasma Produced by an Ultrahigh-Intensity Laser

  • Chapter
Progress in Ultrafast Intense Laser Science II

Summary

X-ray line emissions from ultrashort high-intensity laser-produced plasma were studied in order to clarify the physics of energy transport associated with the generation of ultrashort X-ray pulses for use in various applications. This article reviews two topics. The first is the application of Kα spectroscopy to the study of energy transport in laser-produced plasma. The second topic is the application of X-ray polarization spectroscopy to measurements of the anisotropy of hot electrons generated with ultrashort high-intensity laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kieffer JC, Chaker M, Matte JP, Pépin H, Cotê CY, Beaudoin Y, Johnston TW, Chien CY, Coe S, Mourou G, Peyrusse O (1993) Ultrafast X-ray sources. Phys. Fluids B 5:2676–2681

    Article  ADS  Google Scholar 

  2. Rischel C, Rousse A, Uschmann I, Albouy P, Geindre J, Audebert P, Gauthier J, Foerster E, Martin J, Antonetti A (1997) Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390:490–491

    Article  ADS  Google Scholar 

  3. Mackinnon AJ, Broghesi M, Hatchett S, Key MH, Patel PK, Campbell H, Schiavi A, Snavely R, Wilks SC, Willi O (2001) Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Phys Rev Lett 86:1769–1772

    Article  ADS  Google Scholar 

  4. Tabak M, Hammer J, Glinsky ME, Kruer WL, Wilks SC, Woodworth J, Campbell EM, Perry MD, Mason RJ (1994) Ignition and high gain with ultrapowerful lasers. Phys Plasmas 1:1626–1634

    Article  ADS  Google Scholar 

  5. Kodama R, Norreys PA, Mima K, Dangor AE, Evans RG, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimtsu T, Rose SJ, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka KA, Toyama Y, Yamanaka T, Zepf M (2001) Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412:798–802

    Article  ADS  Google Scholar 

  6. Guethlein G, Food ME, Price D (1996) Electron temperature measurements of solid density plasmas produced by intense ultrashort laser pulses. Phys Rev Lett 77:1055–1058

    Article  ADS  Google Scholar 

  7. Disdier L, Garconnet J-P, Malka G, Miquel J-L (1999) Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse. Phys Rev Lett 82:1454–1458

    Article  ADS  Google Scholar 

  8. Kitagawa Y, Sentoku Y, Akamatsu S, Mori M, Tohyama Y, Kodama R, Tanaka KA, Fuita H, Yoshida H, Matsuo S, Jitsuno T, Kawasaki T, Sakabe S, Nishimura H, Izawa Y, Mima K, Yamanaka T (2002) Progress of fast ignitor studies and petawatt laser construction at Osaka University. Phys Plasams 9:2202–2207

    Article  ADS  Google Scholar 

  9. Wharton KB, Hatchett SP, Wilks SC, Key MH, Moody JD, Yanovsky V, Offenberger AA, Hammel BA, Perry MD, Josi C (1998) Experimental measurements of hot electrons generated by ultraintense (> 1019 W/cm2) laser-plasma interactions on solid-density targets. Phys Rev Lett 81:822–825

    Article  ADS  Google Scholar 

  10. Hall TA, Ellwi S, Batani D, Bernardinello A, Masella A, Koenig M, Benuzzi A, Krishnan J, Pisani F, Djaoui A, Norreys P, Neely D, Rose S, Key M, Fews P (1998) Fast electron deposition in laser shock compressed plastic targets. Phys Rev Lett 81:1003–1006

    Article  ADS  Google Scholar 

  11. Pisani F, Bernardinello A, Batani D, Antonicci A, Martinolli E, Koenig M, Gremillet L, Amiranoff A, Baton S, Davies JR, Hall T, Scott D, Norreys P, Djaoui A, Roussseaux C, Fews P, Bandulett H, Pepin H (2000) Experimental evidence of electric inhibition in fast electron penetration and of electric-field-limited fast electron transport in dense matter. Phys Rev E 62:R5927–5930

    Article  ADS  Google Scholar 

  12. Batani D, Davies JR, Bernardinello A, Pisani F, Koenig M, Hall TA, Ellwi S, Norreys P, Rose S, Djaoui A, Neely D (2000) Explanations for the observed increase in fast electron penetration in laser shock compressed materials. Phys Rev E 61:5725–5733

    Article  ADS  Google Scholar 

  13. Chen H, Soom B, Yaakobi B, Uchida S, Meyerhofer DD (1993) Hot-electron characterization from Kα measurements in high-contrast, p-polarized, picosecond laser-plasma interactions. Phys Rev Lett 70:3431–3434

    Article  ADS  Google Scholar 

  14. Jiang Z, Kieffer JC, Matte JP, Chaker M, Peyrusse O, Gilles D, Korn G, Maksimchuk A, Coe S, Mourou G (1995) X-ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 1018–1019 W/cm2. Phys Plasmas 2:1702–1711

    Article  ADS  Google Scholar 

  15. Teubner U, Uschmann I, Gibbon P, Altenbernd D, Förster E, Feurer T, Theobald W, Sauerbrey R, Hirst G, Key MH, Lister J, Neely D (1996) Absorption and hot electron production by high intensity femtosecond uv-laser pulses in solid targets. Phys Rev E 54:4167–4177

    Article  ADS  Google Scholar 

  16. Feurer T, Theobald W, Sauerbrey R, Uschmann I, Altenbernd D, Teubner U, Gibbon P, Föerster E, Milka G, Miquel JL (1997) Onset of diffuse reflectivity and fast electron flux inhibition in 528-nm-laser-solid interactions at ultrahigh intensity. Phys Rev E 56:4608–4614

    Article  ADS  Google Scholar 

  17. Rousse A, Audbert P, Geindre JP, Falliés F, Gauthier JC, Mysyrowicz A, Grillon G, Antonetti A (1994) Efficient Kα X-ray source from femtosecond laser-produced plasmas. Phys Rev E 50:2200–2207

    Article  ADS  Google Scholar 

  18. Koch JA, Key MH, Freeman RR, Hatchett SP, Lee RW, Pennington D, Stephens RB, Tabak M (2001) Experimental measurements of deep directional columnar heating by laser-generated relativistic electrons at near-solid density. Phys Rev E 65:016410-1–9

    Article  ADS  Google Scholar 

  19. Wilks SC, Kruer WL (1997) Absorption of ultrashort, ultra-intense laser light by solid and overdense plasmas. IEEE J Quant Electron 33:1954–1968, and references therein

    Article  ADS  Google Scholar 

  20. Bell AR, Davies JR, Guerin S, Ruhl H (1997) Fast-electron transport in high-intensity short-pulse laser-solid experiments. Plasma Phys Control Fusion 39:653–659

    Article  ADS  Google Scholar 

  21. Beiersdorfer P, Slater M (2001) Measurement of the electron cyclotron energy component of the electron beam of an electron beam ion trap. Phys Rev E 64:066408-1–6

    Article  ADS  Google Scholar 

  22. Kieffer JC, Matte JP, Chaker, Beaudoin Y, Chien CY, Coe S, Mourou G, Dubau J, Inal MK (1993) X-ray-line polarization spectroscopy in laserproduced plasmas. Phys Rev E 48:4648–4658

    Article  ADS  Google Scholar 

  23. Sakabe S (1998) Fundamentals of lasers III: Ultra-short high-intesity lasers. Rev Laser Eng 26:823–828 (in Japanese)

    Google Scholar 

  24. Amemiya Y (1995) Imaging plates for use with synchrotron radiation. J Synchrotron Rad 2:13–21

    Article  Google Scholar 

  25. Okihara S, Sentoku S, Sueda K, Shimizu S, Sato F, Miyanaga N, Mima K, Izawa Y, Iida T, Sakabe S (2002) Energetic proton generation in a thin plastic foil irradiated by intense femtosecond lasers. J Nucl Sci Technol 39:1–5

    Article  Google Scholar 

  26. Johzaki T et al. (2004) 2-D analysis of ignition and burn characteristics for fast ignition targets. In: Proc. 3rd Int. Conf. on Inertial Fusion Science and Applications (IFSA2003), Monterey CA, 2003, American Nuclear Society, La Grange Park IL, p 474

    Google Scholar 

  27. Takabe H, Ishii T (1993) Effect of nonuniform implosion on high-gain intertial confinement fusion targets. Jpn J Appl Phys 32:5675–5680

    Article  ADS  Google Scholar 

  28. Kawamura T, Nishimura H, Koike F, Ochi Y, Matsui R, Miao WY, Okihara S, Sakabe S, Uschmann I, Förster E, Mima K (2002) Population kinetics on Kalpha lines of partially ionized Cl atoms. Phys Rev E 66:061401-1–8

    Article  Google Scholar 

  29. More RM, Warren KH, Young DA, Zimmerman GB (1988) A new quotidian equation of state (QEOS) for hot dense matter. Phys Fluids 31:3059–3078

    Article  MATH  ADS  Google Scholar 

  30. Cowan RD, Ashkin J (1957) Extension of the Thomas-Fermi-Dirac statistical theory of the atom to finite temperatures. Phys Rev 105:144–157

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Banes JF (1967) Statistical atom theory and the equation of state of solids. Phys Rev 153:269–275

    Article  ADS  Google Scholar 

  32. Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) GRASP: A general-purpose relativistic atomic structure program. Comput Phys Commun 55:425–456

    Article  ADS  Google Scholar 

  33. Fritzsche S, Fricke B (1992) Interchannel interactions and relaxation in the 2P auger spectra of Mg-like ions. Phys Scr T41:45–50

    Article  ADS  Google Scholar 

  34. Sentoku Y, Mima K, Taguchi T, Miyamoto S, Kishimoto Y (2000) Particle simulation on X-ray emissions from ultra-intense laser produced plasmas. Phys Plasmas 5:4366–4372

    Article  ADS  Google Scholar 

  35. Sentoku Y, Mima K, Honda M, Sheng ZM, Kaw P, Nishihara K, Nishikawa K (2001) Anomalous resistivity resulting from MeV-electron transport in overdense plasma. Annu Prog Rep Inst Laser Eng, Osaka University, p 81–86, ISSN 1343–3857

    Google Scholar 

  36. Alfvén H (1939) On the motion of cosmic rays in interstellar space. Phys Rev 55:425–430

    Article  MATH  ADS  Google Scholar 

  37. Nishimura H, Kawamura, Matsui T, Ochi Y, Okihara S, Sakabe S, Koike F, Jhozaki T, Nagatomo H, Mima K, Uschmann I, Förster E (2003) Kα spectroscopy to study energy transport in ultrahigh-intensity laser-produced plasmas. J Quantit Spectrosc Ra 81:327–337

    Article  ADS  Google Scholar 

  38. Inubushi Y, Nishimura H, Ochiai M, Fujioka S, Izawa S (2004) X-ray polarization spectroscopy for measurement of anisotropy of hot electrons generated with ultraintense laser pulse. Rev Sci Instrum 75:3699–3701

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nishimura, H. et al. (2007). Application of X-Ray Spectroscopy to the Study of Energy Transport in Plasma Produced by an Ultrahigh-Intensity Laser. In: Progress in Ultrafast Intense Laser Science II. Springer Series in Chemical Physics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38156-3_10

Download citation

Publish with us

Policies and ethics