Skip to main content

The Up operator of Atkin on modular functions of level 2 with growth conditions

  • Conference paper
Book cover Modular Functions of One Variable III

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 350))

Abstract

Let p be an odd prime, p ≠ 3, and let g be the polynomial defined by

$$ ( - 1)^{{{(p - 1)} \mathord{\left/ {\vphantom {{(p - 1)} 2}} \right. \kern-\nulldelimiterspace} 2}} g(\lambda ) = \sum\limits_{j = 0}^{{{(p - 1)} \mathord{\left/ {\vphantom {{(p - 1)} 2}} \right. \kern-\nulldelimiterspace} 2}} {({{(\frac{1} {2})_j } \mathord{\left/ {\vphantom {{(\frac{1} {2})_j } {j!}}} \right. \kern-\nulldelimiterspace} {j!}})^2 } \lambda ^j $$
(1)

so that g(λ) is the standard formula for the Hasse invariant of the elliptic curve

$$ Y^2 = X(X - 1)(X - \lambda ). $$
(2)

We shall follow in general the notation of our article [3]. In terms of q-expansions, Atkin [1] has defined the transformation

$$ U_p :\sum a_m q^m \to \sum a_{mp} q^m $$

but without the imposition of growth conditions one may construct eigenvectors with quite arbitrary eigenvalues; indeed formally, for any field element γ,

$$ \theta _j = \sum\limits_{S = 0}^\infty {\gamma ^S q^{p^S } } $$

is trivially eigenvector for eigenvalue γ. Thus to obtain an interesting theory we impose the restriction that Up be applied to functions satisfying certain growth conditions. To explain these conditions for each pair of positive real numbers b1,b2, let L(b1,b2) be the space of all functions holomorphic and bounded on the set M\( M_{b_1 ,b_2 } \) consisting of all λ such that

$$ \begin{gathered} b_1 > ord g(\lambda ) \hfill \\ b_2 > Max(ord \lambda , ord(1 - \lambda ), ord \lambda ^{ - 1} ). \hfill \\ \end{gathered} $$
(3)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkin, A. O. Congruence Hecke operators, Proc. Symp. Pure Math. 12, pp.33–40.

    Google Scholar 

  2. Dwork, B. Amer. J. Math. 82(1960), pp.631–648.

    Article  MATH  MathSciNet  Google Scholar 

  3. Dwork, B. Inv. Math. 12(1971), pp.249–256.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dwork, B. (1973). The Up operator of Atkin on modular functions of level 2 with growth conditions. In: Kuijk, W., Serre, JP. (eds) Modular Functions of One Variable III. Lecture Notes in Mathematics, vol 350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37802-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37802-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06483-1

  • Online ISBN: 978-3-540-37802-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics