Skip to main content

Historical Development of Electron Holography

  • Chapter
Book cover Electron Holography

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 70))

  • 614 Accesses

Abstract

The original approach that Danis Gabor took in developing electron holography was an in-line projection method [4.1] in which an object is illuminated with a divergent spherical wave from a point focus close to the object (Fig.4.1). This kind of hologram is a highly magnified projected interference pattern between the object and the transmitted waves. No lenses are necessary, but this method requires a very small electron point focus. The diameter of the focus determines the resolution of the reconstructed image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Gabor: Microscopy by reconstructed wavefronts. Proc. Roy. Soc. London A 197, 454 (1949)

    Article  ADS  MATH  Google Scholar 

  2. M. E. Haine, J. Dyson: A modification to Gabor’s proposed diffraction microscope. Nature 166, 315 (19 August 1950 )

    Google Scholar 

  3. H.-W. Fink, W. Stocker, H. Schmid: Holography with low energy electrons. Phys. Rev. Lett. 65, 1204 (1990)

    Article  ADS  Google Scholar 

  4. H.-W. Fink, H. Schmid: Atomic resolution in lensless low-energy electron holography. Phys. Rev. Lett. 67, 1543 (1991)

    Article  ADS  Google Scholar 

  5. H. Boersch: Fresnelsche Beugungserscheinungen im Ü bermikroskop. Naturwiss. 28, 711 (1940)

    Google Scholar 

  6. G.I. Rogers: Experiments in diffraction microscopy. Proc. Roy. Soc. Edinburgh A 63 193 (1950/51)

    Google Scholar 

  7. A.V. Baez: A study in diffraction microscopy with special reference to X-rays. J. Opt. Soc. Am. 42, 756 (1952)

    Article  ADS  Google Scholar 

  8. P. Kirkpatrick, H. M. El-Sum: Image formation by reconstructed wavefronts I. Physical principles and methods of refinements. J. Opt. Soc. Am. 46, 825 (1956)

    Article  ADS  Google Scholar 

  9. M.E. Haine, T. Mulvey: The formation of the diffraction image with electrons in the Gabor diffraction microscope. J. Opt. Soc. Am. 42, 763 (1952)

    Article  ADS  Google Scholar 

  10. T. Hibi: Pointed filaments I. Its production and its application. J. Electron Microsc. 4, 10 (1956)

    Google Scholar 

  11. E.N. Leith, J. Upatnieks: Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123 (1962)

    Article  ADS  Google Scholar 

  12. J.B. DeVelis, G.B. Parrent, B.J. Thompson: Image reconstruction with Fraunhofer holograms. J. Opt. Soc. Am. 56, 423 (1966)

    Article  ADS  Google Scholar 

  13. A. Tonomura, A. Fukuhara, H. Watanabe, T. Komoda: Optical reconstruction of image from Fraunhofer electron-hologram. Jpn. J. Appl. Phys. 7, 295 (1968)

    Article  ADS  Google Scholar 

  14. K.-J. Hanszen: Holographische Rekonstruktions-Verfahren in der Elektronenmikroskopie and ihre kontrastübertragunstheoretische Deutung. Teil A: In-line Fresnel-Holographie. Optik 32, 74 (1970)

    Google Scholar 

  15. J. Munch: Experimental electron holography. Optik 43, 79 (1975)

    Google Scholar 

  16. M. Bonnet, M. Troyon, P. Gallion: Possible applications of Fraunhofer holography in high resolution electron microscopy. Proc. Int’I Congress on Electron Microscopy, Toronto, 1978, ed. by J.M. Sturgess (Microscopical Society of Canada, Toronto 1978) Vol. 1, pp. 222–223

    Google Scholar 

  17. G. Möllenstedt, H. Wahl: Elektronenholographie and Rekonstruktion mit Laserlicht. Naturwissenschaften 55, 340 (1968)

    Article  ADS  Google Scholar 

  18. A. Tonomura: Electron beam holography. J. Electron Microsc. 18, 77 (1969)

    Google Scholar 

  19. I. Weingärtner, W. Mirandé, E. Menzel: Enhancement of resolution in electron microscopy by image holography. Optik 30, 318 (1969)

    Google Scholar 

  20. H. Tomita, T. Matsuda, T. Komoda: Electron microholography by two-beam method. Jpn. J. Appl. Phys. 9, 719 (1970)

    Google Scholar 

  21. H. Tomita, T. Matsuda, T. Komoda: Off-axis electron microholography. Jpn. J. Appl. Phys. 11, 143 (1972)

    Article  ADS  Google Scholar 

  22. G. Saxon: Division of wavefront side-band Fresnel holography with electrons. Optik 35, 195 (1972)

    Google Scholar 

  23. G. Saxon: The compensation of magnetic lens wavefront aberrations in side-band holography with electrons. Optik 35, 359 (1972)

    Google Scholar 

  24. A. Tonomura, T. Matsuda, J. Endo, H. Todokoro, T. Komoda: Development of a field emission electron microscope. J. Electron Microsc. 28, 1 (1979)

    Google Scholar 

  25. A. Tonomura, T. Matsuda, J. Endo: High resolution electron holography with field emission electron microscope. Jpn. J. Appl. Phys. 18, 9 (1979)

    Article  ADS  Google Scholar 

  26. H. Lichte: Electron biprism interference fringes of 0.08 nm spacing for high resolution electron holography. Optik 70, 176 (1985)

    Google Scholar 

  27. H. Lichte: Electron holography approaching atomic resolution. Ultramicroscopy 20, 293 (1986)

    Article  Google Scholar 

  28. E. Völkl, H. Lichte: Electron holograms for subangstrom point resolution. Ultramicroscopy 32, 177 (1990)

    Article  Google Scholar 

  29. T. Kawasaki, T. Matsuda, J. Endo, A. Tonomura: Observation of a 0.055 nm spacing lattice image in gold using a field emission electron microscope. Jpn. J. Appl. Phys. 29, L508 (1990)

    Article  ADS  Google Scholar 

  30. T. Kawasaki, Q. Ru, T. Matsuda, Y. Bando, A. Tonomura: High resolution holography observation of H-Nb2 05. Jpn. J. Appl. Phys. 30, L1830 (1991)

    Article  ADS  Google Scholar 

  31. T. Tanji, K. Urata, K. Ishizuka, Q. Ru, A. Tonomura: Observation of atomic surface potential by electron holography. Ultramicroscopy 49, 259 (1993)

    Article  Google Scholar 

  32. G. Matteucci, G.F. Missiroli, G. Pozzi: A new off-axis Fresnel holographic method in transmission electron microscopy. Ultramicroscopy 8, 403 (1982)

    Article  Google Scholar 

  33. Q. Ru, N. Osakabe, J. Endo, A. Tonomura: Electron holography available in a nonbiprism transmission electron microscope. Ultramicrosc. 53, 1 (1994)

    Google Scholar 

  34. Q. Ru: Incoherent electron holography. J. Appl. Phys. 77, 1421 (1995)

    Google Scholar 

  35. R. Lauer: Fourier-Holographie mit Elektronen. Optik 67, 159 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tonomura, A. (1999). Historical Development of Electron Holography. In: Electron Holography. Springer Series in Optical Sciences, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37204-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37204-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08421-8

  • Online ISBN: 978-3-540-37204-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics