Skip to main content

Determination of Detonation Parameters and Efficiency of Solid HE Explosion Products

  • Chapter
  • 1899 Accesses

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

Problems related to the design of HE containment vessels, an estimation of their security and ability to withstand a variety of external effects, requires versatile experimental research into high explosive properties, the explosion itself, and its thermomechanical effect on the environment. Knowledge pertaining to the mechanisms involved in the initiation and propagation of a detonation wave is needed for effective work in a number of important practical areas, such as:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Byurlo, E., Detonation Through Effect, Art. Academy Publishing House, Moscow, 1934.

    Google Scholar 

  2. 2. Cachia, G.P., and Whitbread, E.G., “The Initiation of Explosives by Shock,” Proc., Royal Society of London, Series A, Vol. 246, No. 1245, 1958, pp. 268–273.

    Google Scholar 

  3. 3. Roth, J., “Shock Sensitivity and Shock Hugoniots of High-Density Granular Explosives,” Proc., 5 th International Symposium on Detonation, Aug. 18–21, 1970, Pasadena, CA, pp. 219–230.

    Google Scholar 

  4. 4. Ramsay, J.B., and Popolato, A., “Analysis of Shock Wave and Initiation Data for Solid Explisives,” Proc., 4 th International Symposium on Detonation, Oct. 12–15, 1965, White Oak, Maryland, pp. 233–238.

    Google Scholar 

  5. 5. Campbell, A.W., Davis, W.C., Ramsay, J.B., and Travis, J.R., “Shock Initiation of Solid Explosives,” Physics of Fluids, Vol. 4, No. 4, 1961, pp. 511–521.

    Article  Google Scholar 

  6. 6. Koldunov, S.A., Shvedov, K.K., and Dremin, A.N., “Decomposition of Porous Explosives Under the Effect of Shock Waves,” Fizika Goreniya i Vzryva, Vol. 9, No. 2, 1973, pp. 295–304, [English trans., Combustion, Explosion, and Shock Waves, Vol. 9, No. 2, 1973, pp. 255–262].

    Google Scholar 

  7. 7. Campbell, A.W., Davis, W.C., and Travis, J.R., “Shock Initiation of Detonation in Liquid Explosives,” Physics of Fluids, Vol. 4, No. 4, 1961, pp. 498–510.

    Article  Google Scholar 

  8. 8. Jacobs, S.J., Liddiard, T.P., Jr., and Drimmer, B.E., “The Shock-to-Detonation Transition in Solid Explosives,” Proc., 9 th International Symposium on Combustion, Aug. 27-Sep 1, 1962, Ithaca, NY, pp. 517–529.

    Google Scholar 

  9. 9. Dobratz, B.M., LLNL Explosives Handbook: Proberties of Chemical Explosives and Explosive Simulants, Lawrence Livermore National Laboratory, Livermore, CA, 1981.

    Google Scholar 

  10. 10. Dremin, A.N. and Koldunov, S.A., “Detonation Initiation by Shock Waves in Cast and Pressed Trinitrotoluene,” in Explosive Practice 63/20, Nedra Publ., Moscow, 1967, pp. 37–50.

    Google Scholar 

  11. 11. Shvedov, K.K., and Dremin, A.N., “Effect of Charge Aggregate State and Structure on Trinitrotoluene Decomposition in Shock Waves,” in Combustion and Detonation, Proc., 4th All-Union Symposium on Combustion and Detonation, Nauka Publ., Moscow, 1977, pp. 440–446.

    Google Scholar 

  12. 12. Dremin, A.N., Savrov, S.D., Trofimov, V.S., and Shvedov, K.K., Detonation Waves in Condensed Media, Nauka Publ., Moscow, 1970, p. 164.

    Google Scholar 

  13. 13. Kanel, G.I., and Dremin, A.N., “Decomposition of Cast Trotyl in ShockWaves,” Fizika Goreniya i Vzryva, Vol. 13, No. 1, 1977, pp. 85–92, [English trans., Combustion, Explosion, and Shock Waves, Vol. 13, No. 1, 1977, pp. 71–77].

    Google Scholar 

  14. 14. Batkov, Yu.V., Novikov, S.A., Pogorelov, A.P., and Sinitsyn, V.A., “Investigation of the Process of Explosive Transformation of the Composite TG 50/50 Behind a Nonstationary Shock Front,” Fizika Goreniya i Vzryva, Vol. 15, No. 5, 1979, pp. 139–141, [English trans., Combustion, Explosion, and Shock Waves, Vol. 15, No. 5, 1979, pp. 676–678].

    Google Scholar 

  15. 15. Uokerli, D., et al., “Studying Shock-Wave Initiation of PBX-9404,” in Detonation and High Explosives, Borisov, A.A., ed., Mir Publ., Moscow, 1981, pp. 269–290.

    Google Scholar 

  16. 16. Lobanov, V.F., “Initiating-Wave Parameter Determination for TG 50/50,” Fizika Goreniya i Vzryva, Vol. 22, No. 5, 1986, pp. 104–111, [English trans., Combustion, Explosion, and Shock Waves, Vol. 22, No. 5, 1986, pp. 589–594].

    Google Scholar 

  17. 17. Glushak, B.L., Novikov, S.A., and Pogorelov, A.P., “Shock-Wave Initiation of Solid Heterogeneous Explosives,” Fizika Goreniya i Vzryva, Vol. 20, No. 4, 1984, pp. 77–85, [English trans., Combustion, Explosion, and Shock Waves, Vol. 20, No. 4, 1984, pp. 429–436].

    Google Scholar 

  18. 18. Grin, L., Nidik, E., Li, E., and Tarver, C., “PBX-9404 Chemical Decomposition Initiation by Weak Shock Waves,” in Detonation and High Explosives, Mir Publ., Moscow, 1981, pp. 107–122.

    Google Scholar 

  19. 19. Setchell, R.E., Ramp-Wave Initiation of Granular Explosives,” Combustion and Flame, Vol. 43, 1981, pp. 255–264.

    Article  Google Scholar 

  20. 20. Doronin, G.S., Yermolovich, E.I., and Rabotinsky, A.N., “Pressed Trinitrotoluene Decomposition Kinetics During Smeared-Front Pulse Initiation,” Proc., 1 st All-Union Symposium on Macroscopic Kinetics and Chemical Gas Dynamics, Chernogolovka, 1984, Vol. 1, Part 1, pp. 30–31.

    Google Scholar 

  21. 21. Campbell, A.W., and Travis, J.R., “The Shock Densensitization of PBX-9404 and Composition B-3,” Proc., 8 th International Symposium on Detonation, Jul. 15–19, Albuquerque, NM, 1985, pp. 1057–1068.

    Google Scholar 

  22. 22. Batkov, Yu.V., Glushak, B.L., and Novikov, S.A., “Desensitization of Pressed Explosive Compositions Based on TNT, RDX, and HMX Under Double Shock- Wave Loading,” Fizika Goreniya i Vzryva, Vol. 31, No. 4, 1995, pp. 89–92, [English trans., Combustion, Explosion, and Shock Waves, Vol. 31, No. 4, 1995, pp. 482–485].

    Google Scholar 

  23. 23. Fowles, R., and Williams, R.F., “Plane Stress Wave Propagation in Solids,” Journal of Applied Physics, Vol. 41, No. 1, 1970, pp. 360–363.

    Article  Google Scholar 

  24. 24. Batalova, M.V., Bakhrakh, S.M., and Zubarev, V.N., “Excitation of a Detonation in Heterogeneous Explosives by Shock Waves,” Fizika Goreniya i Vzryva, Vol. 16, No. 2, 1980, pp. 105–109, [English trans., Combustion, Explosion, and Shock Waves, Vol. 16, No. 2, 1980, pp. 227–231].

    Google Scholar 

  25. 25. Belinets, Yu.M., Dremin, A.N., and Kanel, G.I., “Kinetics of Pressed-TNT Decomposition Behind a Shock Front,” Fizika Goreniya i Vzryva, Vol. 14, No. 3, 1978, pp. 111–116, [English trans., Combustion, Exposion, and Shock Waves, Vol. 14, No. 3, 1978, pp. 361–365].

    Google Scholar 

  26. 26. Nutt, G.L., and Erickson, L.M., “Reactive Flow Lagrange Analysis in RX-26- AF,” Shock Waves in Condensed Matter - 1983, Asay, J.R., Graham, R.A., and Straub, G.K., eds., Elsevier, Amsterdam, 1984, pp. 605–608.

    Google Scholar 

  27. 27. Belyaev, A.F., Bobolev, V.K., and Sulimov, A.A., Condensed System De.agration-to-Detonation Transition, Nauka Publ., Moscow, 1973, p. 292.

    Google Scholar 

  28. 28. Dubovik, A.S., Photographic Recording of Fast Processes, Nauka Publ., Moscow, 1964, p. 467.

    Google Scholar 

  29. 29. Orlenko, L.P., ed., Physics of Explosion, 3rd Edition, Vol. 1, Fizmatlit Publ., Moscow, 2002.

    Google Scholar 

  30. 30. Veretennikov, V.A., Dremin, A.N., Rozanov, O.K., and Shvedov, K.K., “Applicability of Hydrodynamic Theory to the Detonation of Condensed Explosives,” Fizika Goreniya i Vzryva, Vol. 3, No. 1, 1967, pp. 3–10, [English trans., Combustion, Explosion, and Shock Waves, Vol. 3, No. 1, 1967, pp. 1–5].

    Google Scholar 

  31. 31. Jameson, R.L., and Hawkins, A., “Shock Velocity Measurements in Inert Monitors Placed on Several Explosives,” Proc., 5 th International Symposium on Detonation, Aug 18–21, 1970, Pasadena, CA, pp. 23–29.

    Google Scholar 

  32. 32. Ashaev, V.K., Doronin, G.S., and Levin, A.D., “Detonation Front Structure in Condensed High Explosives,” Fizika Goreniya i Vzryva, Vol. 24, No. 1, 1988, pp. 95–99, [English trans., Combustion, Explosion, and Shock Waves, Vol. 24, No. 1, 1988, pp. 88–92].

    Google Scholar 

  33. 33. Dremin, A.N., Shvedov, K.K., and Veretennikov, V.A., “Studying Detonation of Ammonit PZhV-20 and Some Other HE,” Explosive Practice, N 52/9, Gosgortekhizdat Publ., Moscow, 1963.

    Google Scholar 

  34. 34. Dremin, A.N., and Shvedov, K.K., “Estimation of Chapman-Jouget Pressure and Reaction Time in Detonation Wave of Powerful HE, Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, 1964, pp. 154–159.

    Google Scholar 

  35. 35. Zaitsev, V.M., Pokhil, P.F., and Shvedov, K.K., “Measurement of Sound Speed in Detonation Products,” Doklady Akademii Nauk SSSR, Vol. 133, No. 1, 1960, pp. 155–157.

    Google Scholar 

  36. 36. Dorokhin, V.V., Zubarev, V.N., Orekin, Yu.K., Panov, N.V., and Shaboldina, N.L., “Motion of Explosion Products Behind a Detonation Wave Front,” Fizika Goreniya i Vzryva, Vol. 21, No. 4, 1985, pp. 100–104, [English trans., Combustion, Explosion, and Shock Waves, Vol. 21, No. 4, 1985, pp. 471–474].

    Google Scholar 

  37. 37. Dorokhin, V.V., Zubarev, V.N., Orekin, Yu.K., Panov, N.V., and Shaboldina, N.L., “Continuous Radiographic Recording for Explosion Products Behind a Detonation Front,” Fizika Goreniya i Vzryva, Vol. 24, No. 1, 1988, pp. 118–122, [English trans., Combustion, Explosion, and Shock Waves, Vol. 24, No. 1, 1988, pp. 109–112].

    Google Scholar 

  38. 38. Zubarev, V.N., “Structure of Self-Similar Rarefaction Waves and Expansion Adiabats of Substances,” Fizika Goreniya i Vzryva, Vol. 20, No. 3, 1984, pp. 66–67, [English trans., Combustion, Explosion, and Shock Waves, Vol. 20, No. 3, 1984, pp. 307–308].

    Google Scholar 

  39. 39. Shefield, S.A., Bloomquist, D.D., and Tarver, C.M., “Subnanosecond Measurements of Detonation Fronts in Solid High Explosives,” Journal of Chemical Physics, Vol. 80, No. 8, 1984, pp. 3831–3844.

    Article  Google Scholar 

  40. 40. Utkin, A.V., Kanel, G.I., and Fortov, V.E., “Empirical Macrokinetics of the Decomposition of a Desensitized Hexogen in Shock and Detonation Waves,” Fizika Goreniya i Vzryva, Vol. 25, No. 5, 1989, pp. 115–122, [English trans., Combustion, Explosion, and Shock Waves, Vol. 25, No. 5, 1989, pp. 625–632].

    Google Scholar 

  41. 41. Fedorov, A.V., Menshikh, A.V., and Yagodin, N.V., “Detonation Wave Front Structure of Condensed High Explosives,” Proc., New Models and Hydrocodes for Shock Wave Processes in Condensed Matter, Oxford, UK, 1997, Publ., AWE Hunting BRAE, Aldermaston, UK, 1997, Vol. 2, pp. 830–832.

    Google Scholar 

  42. 42. Voskoboynikov, I.M., and Gogulya, M.F., “Shock Front Luminosity in Liquid Near the Detonating Charge Interface,” Khimicheskaya Fizika, No. 7, 1984, pp. 1036–1041.

    Google Scholar 

  43. 43. Evstigneev, A.A., Zhernokletov, M.V., and Zubarev, V.N., “Isentropic Broadening and Equation of State of Trotyl Explosion Products,” Fizika Goreniya i Vzryva, Vol. 12, No. 5, 1976, pp. 758–763, [English trans., Combustion, Explosion, and Shock Waves, Vol. 12, No. 5, 1976, pp. 678–682].

    Google Scholar 

  44. 44. Zhernokletov, M.V., Zubarev, V.N., and Telegin, G.S., “Expansion Isentropes of the Explosion Products of Condensed Explosives,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 10, No. 4, 1969, pp. 127–132, [English trans., Journal of Applied Mechanics and Technical Physics, Vol. 10, No. 4, 1969, pp. 650–655].

    Google Scholar 

  45. 45. Kanel, G.I., Razorenov, S.V., Utkin, A.V., and Fortov, V.E., Shock-Wave Phenomena in Condensed Media, Yanus, K. Publ., Moscow, 1996 [see also, Kanel, G.I., Razorenov, S.V., and Fortov, V.E., Shock-Wave Phenomena and the Properties of Condensed Matter, Springer-Verlag, New York, 2004].

    Google Scholar 

  46. 46. Zubarev, V.N., and Evstigneev, A.A., “Equations of State of the Products of Condensed-Explosive Explosions,” Fizika Goreniya i Vzryva, Vol. 20, No. 6, 1984, pp. 114–126, [English trans., Combustion, Explosion, and Shock Waves, Vol. 20, No. 6, 1984, pp. 699–710].

    Google Scholar 

  47. 47. Altshuler, L.V., “Use of ShockWaves in High-Pressure Physics,” Uspekhi Fizicheskikh Nauk, Vol. 85, No. 2, 1965, pp. 197–258, [English trans., Soviet Physics Uspekhi, Vol. 8, No. 1, 1965, pp. 52–91].

    Google Scholar 

  48. 48. Altshuler, L.V., Doronin, G.S., and Zhuchenko, V.S., “Detonation Regimes and Jouguet Parameters of Condensed Explosives,” Fizika Goreniya i Vzryva, Vol. 25, No. 2, 1989, pp. 84–103, [English trans., Combustion, Explosion, and Shock Waves, Vol. 25, No. 2, 1989, pp. 209–224].

    Google Scholar 

  49. 49. Zababakhin, E.I., Some Problems of the Gasdynamics of Explosions, RFNCVNIITF, Snezhinsk, Russia, 1997, [English trans., RFNC-VNIITF, Snezhinsk, Russia, 2001].

    Google Scholar 

  50. 50. Azbukina, I.N., Belyaev, A.F., “Estimation of Cuto. Diameters with the Method of Cones,” Physics of Explosion. Collected Papers N3., USSR Academy of Sciences Publishing House, Moscow, 1955.

    Google Scholar 

  51. 51. Baum, F.A., Derzhavets, A.S., and Duvanova, Zh.M., “Detonation Ability of HE Designed for Operations in Deep Wells,” Explosive Practice 63/20., Nedra Publ., Moscow, 1967, pp. 251–259.

    Google Scholar 

  52. 52. Ramsay, J.B., “Effect of Confinement on Failure in 95 TATB/5 Kel-F,” Proc., 8 th International Symposium on Detonation, Jul. 15–19, 1985, Albuquerque, NM, pp. 372–379.

    Google Scholar 

  53. 53. Belyaev, A.F., and Kurbangalina, R.Kh., “Effect of Initial Temperature on Nitroglycerine and a Trinitrotoluene Cuto. Diameter,” Zhurnal Fizicheskoy Khimii, Vol. 34, No. 3, 1960, pp. 603–610.

    Google Scholar 

  54. 54. Price, D., “Shock Sensitivity, A Property of Many Aspects,” Proc., 5 th International Symposium on Detonation, Aug. 18–21, 1970, Pasadena, CA, pp. 207–217.

    Google Scholar 

  55. 55. Apin, A.Ya., and Velina, N.F., “On Cuto. Diameters of Explosive Single Crystal Detonation,” Proc., 2 nd All-Union Symposium on Combustion and Detonation,” Chernogolovka, 1969.

    Google Scholar 

  56. 56. Andreev, K.K., and Belyaev, A.F., Theory of High Explosives, Oborongiz Publishers, Moscow, 1960.

    Google Scholar 

  57. 57. Apin, A.Ya., Bardin, E.P., and Velina, N.F., “Influence of High Explosive Density and Composition on Explosion Impulse,” in Explosive Practice N 52/9, Gosgortekhizdat Publ., Moscow, 1963, pp. 90–102.

    Google Scholar 

  58. 58. Kuznetsov, V.M., and Shatsukevich, A.F., “The Eficiency of Explosives,” Fizika Goreniya i Vzryva, Vol. 14, No. 2, 1978, pp. 120–125, [English trans., Combustion, Explosion, and Shock Waves, Vol. 14, No. 2, 1978, pp. 235–239].

    Google Scholar 

  59. 59. Dubnov, L.V., Bakharevich, N.S., and Romanov, A.I., Industrial High Explosives, Nedra Publishers, Moscow, 1988.

    Google Scholar 

  60. 60. Altshuler, L.V., Kormer, S.B., Brazhnik, M.I., Vladimirov, L.A., Speranskaya, M.P., and Funtikov, A.I., Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, Vol. 38, 1960, pp. 1061–1073, [English trans., Soviet Physics JETP, Vol. 11, No. 4, 1960, pp. 766–775].

    Google Scholar 

  61. 61. Smirnov, S.P., Kolganov, E.V., Kulakevich, Ya.S., et al., “Relation of the Launching Action of Mix and Individual HE to Their Composition and Structure,” in Advanced Methods for Designing and Verification of Rocket-Artillery Arms, RFNC-VNIIEF, Sarov, Russia, 2000, pp. 410–412.

    Google Scholar 

  62. 62. Akst, I.B., “Heat of Detonation, the Cylinder Test, and Performance in Munitions,” Proc., 9 th International Symposium on Detonation, Aug 28 - Sep 1, 1989, Portland, OR, pp. 478–488.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Belsky, V., Zhernokletov, M. (2006). Determination of Detonation Parameters and Efficiency of Solid HE Explosion Products. In: Zhernokletov, M.V., Glushak, B.L. (eds) Material Properties under Intensive Dynamic Loading. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36845-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36845-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36844-1

  • Online ISBN: 978-3-540-36845-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics