Skip to main content

Simple psammoids

  • Chapter
  • First Online:
Physical Soil Mechanics

Abstract

How to catch essentials of granular soils in a simple way? Allegedly Einstein said ‘theories should be as simple as possible, but not simpler’, so what is adequately simple? One can read in the Internet that Einstein’s philosophy of science was more subtle. He wrote ‘Our experience hitherto justifies us in trusting that nature is the realization of the simplest that is mathematically conceivable’, and ‘But what remains unsatisfactory in this is always the arbitrariness in the choice of those elements that one designates as a priori’ (translated by Howard 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arthur J.R.F. and Menzies B.K. Inherent anisotropy in a sand. Géotechnique, 22(1):115–128, 1972.

    Article  Google Scholar 

  • Balthasar K., Gudehus G., Külzer M., and Libreros-Bertini A.B. Thin layer shearing of a highly plastic clay. Nonlin. Proc. Geophys., 13:671–680, 11 2006.

    Article  Google Scholar 

  • Barden L. and Khayatt A.J. Incremental strain rate ratios and strength of sand in the triaxial test. Géotechnique, 16:338–357, 1966.

    Article  Google Scholar 

  • Bauer E. Conditions for embedding Casagrande’s critical states into hypoplasticity. Mech. Cohes. Frict. Mater., 5:125–148, 2000.

    Article  Google Scholar 

  • Bauer E. Calibration of a comprehensive hypoplastic model for granular materials. Soils Found., 36(1):13–26, 1996.

    Google Scholar 

  • Been K. and Jefferies M.G. A state parameter for sands. Géotechnique, 35(2): 99–112, 1985.

    Article  Google Scholar 

  • Bishop A.W., Green G.E., Garga V.K., Andresen A., and Brown J.D. A new ring shear apparatus and its application to the measurement of residual strength. Géotechnique, 21(4):273–328, 1971.

    Article  Google Scholar 

  • Bjerrum L. and Landva A. Direct simple-shear tests on a Norwegian quick clay. Géotechnique, 16(1):1–20, 1966.

    Article  Google Scholar 

  • Budhu M. Lateral stresses observed in two simple shear apparatus. J. Geotech. Eng., ASCE, 111(6):698–711, 6 1985.

    Article  Google Scholar 

  • Casagrande A. Characteristics of cohesionless soils affecting the stability of slopes and earth fills. J. Boston Soc. Civil Eng., 23:257–276, 1 1936.

    Google Scholar 

  • Casagrande A. On liquefaction phenomena. Géotechnique, 22(3):197–202, 1971.

    Google Scholar 

  • Castro G. Liquefaction and cyclic mobility of saturated sands. J. Geotech. Eng. Div., ASCE, 101(GT6):551–569, 1975.

    Google Scholar 

  • Chang C. and Whitman V. Drained permanent deformation of sand due to cyclic loading. J. Geotech. Eng. Div., ASCE, 114(10):1164–1180, 1988.

    Article  Google Scholar 

  • Chu J. and Lo S.-C.R. Asymptotic behaviour of a granular soil in strain path testing. Géotechnique, 44(1):65–82, 1994.

    Article  Google Scholar 

  • Cornforth D.H. Some experiments on the influence of strain conditions on the strengh of sand. Géotechnique, XIV: 143–167, 1964.

    Article  Google Scholar 

  • Cornforth D.H. One-dimensional consolidation curves of a medium sand. Géotechnique, 24:678–683, 1974.

    Article  Google Scholar 

  • De Josselin De Jong G. Rowe’s stress-dilatancy relation based on friction. Géotechnique, 26(3):527–534, 1976.

    Article  Google Scholar 

  • Franke E., Kiekbusch M., and Schuppener B. A new direct simple shear device. Geotech. Test. J., 2(4):190–199, 1979.

    Article  Google Scholar 

  • Garga V.K. and Infante Sedano J.-A. Steady state strength of sands in a constant volume ring shear apparatus. Geotech. Test. J., 25(4):131–148, 12 2002.

    Google Scholar 

  • Goldscheider M. Dilatanzverhalten von Sand bei geknickten Verformungswegen. Mech. Res. Commun., 2:143–148, 1975.

    Article  Google Scholar 

  • Goldscheider M. Grenzbedingung und Fliessregel von Sand. Mech. Res. Commun., 3:463–468, 1976.

    Article  Google Scholar 

  • Goldscheider M. True triaxial tests on dense sand. In I. Vardoulakis, G. Gudehus, F. Darve, editors, Constitutive Relations for Soils, pages 11–54. Balkema, Rotterdam, 1984.

    Google Scholar 

  • Gudehus G. A comprehensive constitutive equation for granular materials. Soils Found., 36(1):1–12, 1996.

    Google Scholar 

  • Gudehus G., Goldscheider M., and Winter H. Mechanical Properties of Sand and Clay and Numerical Integration Methods: Some Sources of Errors and Bounds of Accuracy, pages 121–150. Balkema, Rotterdam, 1977.

    Google Scholar 

  • Guyon E. and Troadec J.-P. Du sac de billes au tas de sable. Odile Jacob, Paris, 1994.

    Google Scholar 

  • Herle I. and Gudehus G. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Coh. Frict. Mater., 4:461–486, 1999.

    Article  Google Scholar 

  • Hirschfeld R.C. and Poulos S.J. High-pressure triaxial tests on a compacted sand and an undisturbed silt. ASTM, Lab. Shear Test. Soils, Tech. Publ., 361:329–339, 1963.

    Google Scholar 

  • Hungr O. and Morgenstern N.R. High velocity ring shear tests on sand. Géotechnique, 34: 415–421, 1984.

    Article  Google Scholar 

  • Ibsen L.B. and Praastrup U. The Danish rigid boundary true triaxial apparatus for soil testing. Geotech. Test. J., 25(3):254–264, 9 2002.

    Google Scholar 

  • Ishihara K. Liquefaction and flow failure during earthquakes. Géotechnique, 43(3):351–415, 1993.

    Article  Google Scholar 

  • Ishihara K. and Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils Found., 23(4):11–26, 1983.

    Google Scholar 

  • Jefferies M.G. Plastic work and isotropic softening in unloading. Géotechnique, 47(5):1037–1042, 1997.

    Article  Google Scholar 

  • Johnson K.L. Contact Mechanics. Cambridge University Press, Cambridge, MA, 1985.

    MATH  Google Scholar 

  • Kolymbas D. An outline of hypoplasticity. Arch. Appl. Mech., 61:143–151, 1991.

    MATH  Google Scholar 

  • Lade P.V. and Duncan J.M. Cubical triaxial tests on cohesionless soil. J. Soil Mech. Found. Div., ASCE, 99(10):793–812, 1973.

    Google Scholar 

  • Lam W.-K. and Tatsuoka F. Effects of initial anisotropic fabric and ς 2 on strength and deformation characteristics of sand. Soils Found., 28(1):89–106, 3 1988.

    Google Scholar 

  • Lanier J. and Zitouni Z. Development of a data base using the Grenoble true triaxial apparatus. In A.S. Saada and G.F. Bianchini, editors, Constitutive Equations for Granular Non-Cohesive Soils, pages 47–57. Balkema, Rotterdam, 1988.

    Google Scholar 

  • Lanier J., Di Prisco C., and Nova R. Étude expérimentale et analyse théorique de l’anisotropie induite du sable d’Hostun. Rev. Franç. Géotech., 57, 59–74, 1991.

    Google Scholar 

  • Miura S. and Toki S. A sample preparation method and its effect on static and cyclic deformation-strength properties of sand. Soils Found., 22(1):61–77, 3 1982.

    Google Scholar 

  • Miura K., Maeda K., Furukawa M., and Toki S. Mechanical characteristics of sands with different primary properties. Soils Found., 38(4):159–172, 12 1998.

    Google Scholar 

  • Mohr O. Abhandlungen aus dem Gebiete der Technischen Mechanik. Ernst und Sohn, Berlin, 2 edition. 1914.

    Google Scholar 

  • Niemunis A. Extended Hypoplastic Models for Soils. Polytechnica, Gdansk, Poland, 2003. monography.

    Google Scholar 

  • Niemunis A. and Cudny M. On hyperelasticity for clays. Comput. Geotech., 23:221–236, 1998.

    Article  Google Scholar 

  • Pradhan T.B.S., Tatsuoka F., and Horii N. Simple shear testing on sand in a torsional shear apparatus. Soils Found., 28(2):95–112, 6 1988a.

    Google Scholar 

  • Pradhan T.B.S., Tatsuoka F., and Horii N. Strength and deformation characteristics of sand in torsional simple shear. Soils Found., 28(3):131–148, 9 1988b.

    Google Scholar 

  • Pradhan T.B.S., Tatsuoka F., and Sato Y. Experimental stress-dilatancy relations of sand subjected to cyclic loading. Soils Found., 29(1):45–64, 3 1989.

    Google Scholar 

  • Ramana K.V. and Raju V.S. Constant-volume triaxial tests to study the effects of membrane penetration. Geotechn. Test. J., 4(3):117–122, 9 1981.

    Article  Google Scholar 

  • Roscoe K.H. The influence of strains in soil mechanics. Géotechnique, 20(2):129–170, 1970.

    Article  Google Scholar 

  • Rutledge P.C. Recent developments in soil testing apparatus. J. Boston Soc. Civil Eng., 22(4): 223–250, 10 1935.

    Google Scholar 

  • Schofield A. Disturbed Soil Properties and Geotechnical Design. Thomas Telford, London, 2005.

    Book  Google Scholar 

  • Schofield A. and Wroth P. Critical State Soil Mechanics. Mc Graw-Hill, London, 1968.

    Google Scholar 

  • Tatsuoka F., Nakamura S., Huang C.C., and Tani K. Strength anisotropy and shear band direction in plane strain tests on sand. Soils Found., 30(1):35–54, 1990.

    Google Scholar 

  • Taylor D.W. Fundamentals of Soil Mechanics. Wiley, New York, 1948.

    Google Scholar 

  • Temmen H., Pleiner H., Liu M., and Brand H.R. Convective non-linearity in non-Newtonian fluids. Phys. Rev. Lett., 84, 3228, 2000.

    Article  Google Scholar 

  • Terzaghi K. Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Leipzig and Wien, 1925.

    MATH  Google Scholar 

  • Vardoulakis I., Goldscheider M., and Gudehus G. Formation of shear bands in sand bodies as a bifurcation problem. Int. J. Numer. Anal. Meth. Geomech., 2:99–128, 1978.

    Article  Google Scholar 

  • Verdugo R. and Ishihara K. The steady state of sandy soils. Soils Found., 36(2):81–91, 6 1996.

    Google Scholar 

  • Vermeer P.A. A double hardening model for sand. Géotechnique, 28: 413–433, 1978.

    Article  Google Scholar 

  • von Wolffersdorff P.-A. A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frict. Mater., 1:251–271, 1996.

    Article  Google Scholar 

  • Wood D.M., Drescher A., and Budhu M. On the determination of stress state in the simple shear apparatus. Geotech. Test. J., 2(4):211–221, 1979.

    Article  Google Scholar 

  • Yamada Y. and Ishihara K. Undrained deformation characteritics of loose sand under three-dimensional stress conditions. Soils Found., 21(1):15–31, 3 1981.

    Google Scholar 

  • Yamada Y. and Ishihara K. Yielding of loose sand in three-dimensional stress conditions. Soils Found., 22(3), 9 1982.

    Google Scholar 

  • Andersen K.H. and Berre T. Behaviour of a dense sand under monotonic and cyclic loading. In Proceedings of the 12th ECSMGE, Geotechnical Engineering for Transportation Infrastructure, pages 667–676, 1999.

    Google Scholar 

  • Bauer E. Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung. PhD thesis, Institute Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 130, 1992.

    Google Scholar 

  • Coulomb M. Essai sur une application des regles des Maximis et Minimis a quelques Problemes de Statique, relatifs a l’Architecture. Editions Science et Industrie, Paris, 1773. reprint 1971.

    Google Scholar 

  • Goldscheider M. and Gudehus G. Rectilinear extension of dry sand: testing apparatus and experimental results. In Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, volume 1/21 143–149, 1973.

    Google Scholar 

  • Gudehus G. A comparison of some constitutive laws under radially symmetric loading and unloading. In W. Wittke, editor, Proc. 3rd Int. Conf. Num. Meth. Geomech., pages 1309–1323. Balkema, Aachen, 1979

    Google Scholar 

  • Gudehus G. and Mašin D. Graphical representation of constitutive equations. Géotechnique, 2, 2010.

    Google Scholar 

  • Howard D.A. Einstein’s Philosophy of Science. 2004. available via Internet.

    Google Scholar 

  • Hvorslev M. J. Ueber die Festigkeitseigenschaften gestörter bindiger Böden. Number 45. Danmarks Naturvidenskabelige Samfund, Ingeniorvidenskabelige Skrifter A, 1937.

    Google Scholar 

  • Hyodo M., Murata H., Yasufuku N., and Fujii T. Undrained cyclic shear strength and deformation of sands subjected to initial static shear stress. In Proceedings of the 4th International Conference on Soil Dynamics and Earthquake Engineering, pages 81–103. Mexico City, 1989.

    Google Scholar 

  • Kolymbas D. Ein nichtlineares viskoplastisches Stoffgesetz für Böden. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, Heft 77, 1978.

    Google Scholar 

  • Nasuno S., Kudrolli A., and Gollub J.P. Sensitive force measurements in a sheared granular flow with simultaneous imaging. In Powders and Grains 97. Balkema, Rotterdam, 1997.

    Google Scholar 

  • Prada F. Improvement of Small Strain Stiffness Behavior in the Hypoplasticity. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, 2010.

    Google Scholar 

  • Rebstock D. Stressing and Relaxation of Sand. PhD thesis, Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, 2010, under preparation.

    Google Scholar 

  • Rowe P.W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. In Proceedings of the Royal Society, pages 500–527. 1962.

    Google Scholar 

  • Terzaghi K. The shearing resistance of saturated soils and the angle between the planes of shear. In Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, volume I, pages 54–56, 1936.

    Google Scholar 

  • Truesdell C. and Noll W. The non-linear field theories of mechanics. In Handbuch der Physik, volume III/3. Springer, Berlin, 1965.

    Google Scholar 

  • Vermeer P.A five-constant model using well-established concepts. In F. Darve G. Gudehus and I. Vardoulakis, editors, Constitutive Relations for Soils, Balkema, pages 175–198. 1984.

    Google Scholar 

  • Wichtmann T. Explicit Accumulation Model for Non-cohesive Soils Under Cyclic Loading. PhD thesis, Institut Grundbau und Bodenmech. Ruhr-Univ., Bochum, Germany, Heft 38, 2005.

    Google Scholar 

  • Wu W. Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. PhD thesis, 1992.

    Google Scholar 

  • Wu W. and Bauer E. . A hypoplastic model for barotropy and pyknotropy of granular soils. In D. Kolymbas, editor, Modern Approaches to Plasticity, pages 225–246, 1993.

    Google Scholar 

  • Youd T.L. Compaction of sands by repeated shear straining. J. Soil Mech. Found. Eng. Div., ASCE, 709–725, 7 1972.

    Google Scholar 

  • Luong M.P. Mechanical aspects and thermal effects of cohesionless soils under cyclic and transient loading. In Proceedings of the IUTAM Conference on Deformation and Failure of Granular Materials, Delft, pages 239–246, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gudehus .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gudehus, G. (2011). Simple psammoids. In: Physical Soil Mechanics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36354-5_2

Download citation

Publish with us

Policies and ethics