Skip to main content

Soft Computing, Molecular Orbital, and Density Functional Theory in the Design of Safe Chemicals

  • Chapter
Soft Computing Approaches in Chemistry

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 120))

  • 286 Accesses

Summary

This research focuses on the use of soft computing to aid in the development of novel, state-of-the-art, non-toxic dyes which are of commercial importance to the U.S. textile industry. Where appropriate, modern molecular orbital (MO) and density functional (DF) techniques are employed to establish the necessary databases of molecular properties to be used in conjunction with the neural network approach. In this research, we focused on: 1) using molecular modeling to establish databases of various molecular properties of azo dyes required as input for our neural network approach; 2) designing and implementing a neural network architecture suitable to process these databases; and 3) investigating combinations of molecular descriptors needed to predict various properties of the azo dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kojima M., Degawa M., Hashimoto Y. and Tada M. (1991), Biochem. Biophy. Res. Commun., 179, p. 817.

    Article  Google Scholar 

  2. Hashimoto Y., Degawa M., Watanabe H. K. and Tada M. (1981), Gann, 72, p. 937.

    Google Scholar 

  3. Degawa M., Miyairi S. and Hashimoto Y., (1978), Gann, 69, pp. 367.

    Google Scholar 

  4. Degawa M., Shoji Y., Masuko K. and Hashimoto Y. (1979), Cancer Lett., 8, p. 71.

    Article  Google Scholar 

  5. Miller J. A. and Miller E. C. (1961), Cancer Res., 21, p. 1068.

    Google Scholar 

  6. Hashimoto Y., Watanabe H.K. and Degawa M., (1981), Gann, 72, p. 921.

    Google Scholar 

  7. Freeman H.S., Posey Jr. J.C. and Singh P. (1992), Dyes and Pigm., 20, p. 279.

    Article  Google Scholar 

  8. Degawa M., Kojima M. and Hashimoto Y. (1985), Mutation Res., 152, p. 125.

    Article  Google Scholar 

  9. Lye J., Hink D and Freeman H.S., Computational Chemistry applied to synthetic dyes. In: Cisneros G., Cogordan J.A., Castro M., Wang C. and editors (1997), Computational chemistry and chemical engineering,Singapore World Scientific Publ.

    Google Scholar 

  10. Spartan v.5.0, Wavefunction Inc.,18401 Von Karmen Avenue, Suite 370, Irvine, CA 92612.

    Google Scholar 

  11. Perdew J.P. (1986), Phys. Rev., B33, p. 8822.

    Article  Google Scholar 

  12. Perdew J.P. (1987), Phys. Rev., B34, p. 7046.

    Google Scholar 

  13. Chung K.T. and Cemiglia C.E. (1992), Mutation Res., 277, p. 201.

    Article  Google Scholar 

  14. Ashby J., Paton D., Lefevre P.A., Styles J.A. and Rose F.L., Carcinogenesis, 3, 1277 (1982).

    Article  Google Scholar 

  15. Cunningham A.R., Klopman G. and Rosenkranz H.S. (1998), Mutation Res., 405, p. 9.

    Article  Google Scholar 

  16. Miller J.A., Sapp R.W. and Miller E.C. (1949), Cancer Res., 9, p. 652.

    Google Scholar 

  17. Mueller G.C. and Miller J.A. (1948), J. Biol. Chem.,176,pp. 535.

    Google Scholar 

  18. Miller J.A. and Miller E.C. (1947), Cancer Res., 7, p. 39.

    Google Scholar 

  19. Zadeh L. (1965), Fuzzy Sets, Information and Control, 8, pp. 338–353.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kosko B. (1986), Fuzzy Entropy and Conditioning, Information Sciences, 40, pp. 165174.

    Google Scholar 

  21. DeLuca A. and Termini S. (1972), A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory, Information and Control, 20, pp. 301–312.

    Article  MathSciNet  Google Scholar 

  22. Kaufmann A. (1975), Introduction to the Theory of Fuzzy Subsets, Academic Press, New York.

    Google Scholar 

  23. Klir G.J. and Folger T.A. (1988), Fuzzy Sets, Uncertainty and Information, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  24. Knopfmacher J. (1975), On Measures of Fuzziness, J. Math. Anal. and Appl., 49, pp. 529–534.

    Article  MATH  MathSciNet  Google Scholar 

  25. Loo S.G. (1977), Measures of Fuzziness, Cybernetica, 20, pp. 201–210.

    MATH  Google Scholar 

  26. Yager R.R. (1979), On the Measure of Fuzziness and Negation. Part I: Membership in the Unit Interval, International Journal of General Systems, 5, pp. 221–229.

    Article  MATH  MathSciNet  Google Scholar 

  27. Yager R.R. (1980), On the Measure of Fuzziness and Negation. Part II: Lattices, Information and Control, 44, pp. 236–260.

    Article  MATH  MathSciNet  Google Scholar 

  28. Higashi M. and Klir G.J. (1982), On Measures of Fuzziness and Fuzzy Complements, International Journal of General Systems, 8, pp. 169–180.

    Article  MATH  MathSciNet  Google Scholar 

  29. Kosko B. (1992), Neural Networks and Fuzzy Systems, Prentice Hall, Englewood Cliffs.

    MATH  Google Scholar 

  30. Zadeh L. (1983), A Computational Approach to Fuzzy Quantifiers in Natural Languages, Comput. Math. Appl., 9, pp. 149–184.

    Article  MATH  MathSciNet  Google Scholar 

  31. Zadeh L. (1983), The Role of Fuzzy Logic in the Management of Uncertainty in Expert Systems, Fuzzy Sets and Systems, 11, pp. 199–227.

    Article  MATH  MathSciNet  Google Scholar 

  32. Dombi J. (1982), A General Class of Fuzzy Operators, the De Morgan Class of Fuzzy Operators and Fuzziness Measures, Fuzzy Sets and Systems, 8, pp. 149–163.

    Article  MATH  MathSciNet  Google Scholar 

  33. Cios K.J. and Sztandera L.M. (1992), Continuous ID3 Algorithm with Fuzzy Entropy Measures, In: Proceedings of the IS` International Conference on Fuzzy Systems and Neural Networks, IEEE Press, San Diego, pp. 469–476.

    Google Scholar 

  34. Cios K.J., Goodenday L.S. and Sztandera L.M. (1994), Hybrid Intelligence Systems for Diagnosing Coronary Stenosis, IEEE Engineering in Medicine and Biology, 13, pp. 723–729.

    Article  Google Scholar 

  35. Sztandera L.M. (1990), Relative Position Among Fuzzy Subsets of an Image, M.S. Thesis, Computer Science and Engineering Department, University of Missouri-Columbia, Columbia, MO.

    Google Scholar 

  36. Vedrina M., Markovic S., Medic-Saric M. and Trinajstic N. (1997), Computers Chem, 21, pp. 355–361.

    Article  Google Scholar 

  37. Balaban A.T. (1982), Chem Phys Letters, 89, pp. 399–404.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sztandera, L., Trachtman, M., Bock, C., Velga, J., Garg, A. (2003). Soft Computing, Molecular Orbital, and Density Functional Theory in the Design of Safe Chemicals. In: Cartwright, H.M., Sztandera, L.M. (eds) Soft Computing Approaches in Chemistry. Studies in Fuzziness and Soft Computing, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36213-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36213-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53507-9

  • Online ISBN: 978-3-540-36213-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics