Skip to main content

Prediction of the Resonance Characteristics of Combustion Chambers on the Basis of Large-Eddy Simulation

  • Conference paper
High Performance Computing in Science and Engineering ’06
  • 1252 Accesses

Abstract

Self-excited (thermo-acoustic) oscillations often occur in combustion systems due to the combustion instabilities. The high pressure oscillations can lead to higher emissions and structural damage of the chamber. For the disposal of the undesirable oscillations one must clearly know the mechanism of the feedback of periodic perturbations in the combustion system. In the last years intensive experimental investigations were performed at the University of Karlsruhe to develop an analytical model for the Helmholtz resonator-type combustion system. In order to understand better the flow effects in the chamber and to localize the dissipation large-eddy simulations (LES) were carried out. In this paper the results of the LES are presented, which show good agreement with the experiments. The comparison of the LES study with the experiments sheds light on the significant role of the wall roughness in the exhaust gas pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Külsheimer, C., Büchner, H., Leuckel, W., Bockhorn, H., Hoffmann, S.: Untersuchung der Entstehungsmechanismen für das Auftreten periodischer Druck-/Flammenschwingungen in hochturbulenten Verbrennungssystemen. VDI-Berichte 1492, pp.463 (1999)

    Google Scholar 

  2. Büchner, H., Bockhorn, H., Hoffmann, S.: Aerodynamic Suppression of Combustion-Driven Pressure Oscillations in Technical Premixed Combustors. Proceedings of Symposium on Energy Engineering in the 21st Century (SEE 2000), 4, pp.1573 (2000)

    Google Scholar 

  3. Büchner, H.: Strömungs-und Verbrennungsinstabilitäten in technischen Verbrennungssystemen. Professorial dissertation, University of Karlsruhe (2001)

    Google Scholar 

  4. Lohrmann, M., Büchner, H.: Scaling of Stability Limits of Lean-Premixed Gas Turbine Combustors. Proceedings of, ASME Turbo Expo, Wien, Austria (2004)

    Google Scholar 

  5. Arnold, G., Büchner, H.: Modelling of the Transfer Function of a Helmholtz-Resonator-Type combustion chamber. Proceedings of the European Combustion Meeting (2003)

    Google Scholar 

  6. Lohrmann, M., Arnold, G., Büchner, H.: Modelling of the Resonance Characteristics of a Helmholtz-Resonator-Type Combustion Chamber with Energy Dissipation. Proceedings of the International Gas Research Conference (IGRC) (2001)

    Google Scholar 

  7. Rommel, D.: Numerische Simulation des instationären, turbulenten und isothermen Strömungsfeldes in einer Modellbrennkammer. Master thesis, Engler-Bunte-Institute, University of Karlsruhe (1995)

    Google Scholar 

  8. Magagnato, F.: KAPPA — Karlsruhe Parallel Program for Aerodynamics. TASK Quarterly 2(2), pp.215–270 (1998)

    Google Scholar 

  9. Smagorinsky, J.: General Circulation Experiments with the Primitive Equations. Monthly Weather Review, 91, pp.99–164 (1963)

    Article  Google Scholar 

  10. Lilly, D.K.: The Representation of Small-Scale Turbulence in Numerical Simulation Experiments. Proc. IBM Scientific Computing Symposium on Environmental Sciences, pp.195–210 (1967)

    Google Scholar 

  11. Schlichting, H., Gersten, K.: Grenzschicht-Theorie. Springer, 9th ed. (1997)

    Google Scholar 

  12. Sexl, T.: Über den von E.G. Richardson entdeckten “Annulareffekt”. Zeitschrift für Physik, 61, pp.349 (1930)

    Article  Google Scholar 

  13. Richardson, E.G., Tyler, E.: The Transverse Velocity Gradient Near the Mouth of Pipes in which an Alternating or Continuous Flow of Air is Established. The Proceedings of the Physical Society, 42, pp.1 (1929)

    Article  Google Scholar 

  14. Jensen, B.L., Sumer, B.M., Fredsoe, J: Turbulent Oscillatory Boundary Layers at High Reynolds Numbers. J. Fluid Mech., 206, pp.265–297 (1989)

    Article  Google Scholar 

  15. Tsuji, Y., Morikawa, Y.: Turbulent Boundary Layer with Pressure Gradient Alternating in Sign. Aero. Quart. 27, pp.15–28 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Magagnato, F., Pritz, B., Büchner, H., Gabi, M. (2007). Prediction of the Resonance Characteristics of Combustion Chambers on the Basis of Large-Eddy Simulation. In: Nagel, W.E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’06. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36183-1_24

Download citation

Publish with us

Policies and ethics